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1 Abstract

In the first half of the 18th century, Benjamin Robins, a British mathematician and military
engineer, invented the ballistic pendulum. This device allowed for fairly accurate estimates
of the muzzle velocities of muskets and other artillery. Through this experimental work he
discovered that air resistance should not be neglected. In 1742 he published these results in
New Principles of Gunnery, the first book to deal extensively with external ballistics. This
book motivated a deeper analysis of projectile motion — a topic tackled by Leonhard Euler
and Daniel Bernoulli. Subsequently, Frederick the Great encouraged Euler to translate this
work of Robins. Euler, true to form, tripled the length of the work with his annotations
and published them in 1745. The annotated text was translated back into English in 1777,
which, two and a half centuries later, brings us to our theme here.

2 The Early Theory of Ballistics

Unbelievable as it may sound, Aristotle — who was a thinker, not an observer — claimed
that when an object is thrown up, it moves in a straight line until it runs out of “up,” and
then falls down, straight down. Aristotle believed that an object moved when a force was
applied to it and stopped when the force stopped. This caused problems when trying to
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explain why an arrow shot from a bow continues to fly after it leaves the bow. Did the
moving arrow create a vacuum behind it into which air rushed and thereby applied a force?1

Niccolò Tartaglia (1500–1557), was the first to use mathematics to study of the paths
of cannonballs. He published two books, Nova scientia (1537) and Quesiti et Inventioni
diverse (1546), which deal with gunnery. A partial English translation of the latter work
appeared in 1588 [43]. In contrast to Aristotle, he argued that the trajectory of a cannonball
is curved near its apex. More interestingly, he stated that the maximum range of a projectile
is attained when the firing elevation is 45◦, however he gave only the weakest argument to
support this claim.

In the second half of his greatest work, The Dialogues of the Two New Sciences (1638),
Galileo took up the question of projectile motion. He argued convincingly that the path
of a projectile in a vacuum was a parabola. This conclusion served gunners well — at
least in certain circumstances.2 Evangelista Torricelli wrote a book, De motu that greatly
impressed Galileo. It contained a geometrical way of computing the range of a projectile.3

Also important in our pre-history of scientific gunnery is Newton’s Principia (1787) where
he argued, among much else, that air resistance is proportional to the square of the speed of
the projectile.4

3 The Life of Benjamin Robins (1707–1751)

Benjamin Robins is best known to mathematicians as one of the warriors in The Analyst
controversy. But our interest in him is his role in the ballistics revolution.

Benjamin Robins was born in 1707 — the same year as Euler — in Bath, England. He
was the only son of poor Quaker parents, John and Sarah (née Broughton). They did not
particularly value education, yet young Benjamin soon was recognized as a mathematical
prodigy with a talent for languages and literature. This led to his introduction to Dr. Henry
Pemberton (1694-1771), the physician and mathematician who is best known as the editor
of the third edition of Newton’s Principia (1727).5 Robins then moved to London where
he studied the works of Apollonius, Archimedes, Fermat, Huygens, DeWitt, Sluse, James
Gregory, Barrow, Newton, Taylor and Cotes. Dr. James Wilson, M.D., a faithful friend of

1Aristotle, Physics. Items which are only cited once in this paper are cited in footnotes. Other items are
in §9, References.

2See http://www.mcm.edu/academic/galileo/ars/arshtml/arstoc.html by Joseph Dauben.
3Philip J. Robinson, “Evangelista Torricelli,” The Mathematical Gazette, Vol. 78, No. 481 (March 1994),

pp. 37–47. Swetz, Frank J., “An historical example of mathematical modeling: the trajectory of a cannon-
ball,” International Journal of Mathematical Education in Science and Technology, vol. 20, no. 5, 731–741.
Reprinted in Learn from the Masters, MAA 1995.

4For a richly illustrated discussion of the early history of gunnery see The Geometry of War by Jim
Bennett and Stephen Johnson, which is the catalog of an exhibition at the Museum of the History of Science
at Oxford in 1996.

5While studying medicine at Lyden under Boerhaave, and later at Paris and London, Pemberton taught
himself mathematics. He published a paper in the Philosophical Transactions in 1727 attacking the mechanics
of Leibniz and declaring strong support for Newton. This brought an introduction to Newton and within
the year he was asked to edit the third edition of Newton’s Principia.
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Robins and editor of his Mathematical Tracts (1761) has written a long preface to that work
[32, pp. v–xlvi] that is the best biographical source about Robins.6 Of these works that
Robins read, Wilson says “These authors he readily understood without any assistance; of
which he gave frequent proofs to his friends.” [32, p. vi].

In the early 1730s, Robins was interested in fortification design, bridge design, hydraulics
and ballistics. This led to numerous trips to the United Provinces, Flanders, and Northern
France with high ranking friends in British Society [40, p. 69].

On the mathematical side, his “A demonstration of the 11th proposition of Sir Isaac
Newton’s Treatise on Quadratures,” which was published in the Philosophical Transactions
(1727) was sufficiently well regarded that he was elected a Fellow of the Royal Society of
London in that same year.

Then Robins turned to polemical writing. The first work to provoke him was The Analyst
(1734) of Bishop George Berkeley. To discuss this will take us too far afield.7 In May 1728
in the journal The Present State of the Republic of Letters, Robins published “Remarks on
a Treatise, lately printed at Paris, and entitled Discours sur les Loix de la communication
du Mouvement, par Mons. Bernoulli,” [32, reprinted, pp. 174–188]. In 1739 he published
Remarks on M. Euler’s Treatise of Motion which was a logical attack on Euler’s use of
infinitesimal methods and also of his fondness of algebraic over geometric methods [17].
Robins was a strong defender of Euclid and his methods of proofs, something that Wilson
brings out in his preface to the Mathematical Tracts of Robins.

Also in 1739, Robins wrote three political pamphlets railing against Sir Robert Walpole’s
reluctance to go to war with Spain and the corruption of Walpole’s administration. The
positive effect of Robins’s support for the Tory opposition was that he was appointed sec-
retary of a committee set up by the House of Commons to investigate allegations against
Walpole. This ended in a “compromise between the contending parties; and most concerned
were gratified, either with honours or places, except the secretary; which some attributed to
his having been too sincere in the affair.” [32, p. xxvii].

At this time, Sir Robert Walpole was making plans to found the Royal Military Academy
at Woolwich to provide mathematical and scientific education for British engineering and
artillery officers. The Academy was officially founded by a Royal Warrant signed 30 April
1741 by King George the Second.

Benjamin Robins was much interested in becoming the mathematics professor at this
new institution, so he began to plan a course of lectures on fortification and gunnery. He
showed a manuscript of this course to British political and military authorities as part of

6Of Wilson we know very little. He attended Trinity College, Cambridge where he was made a scholar in
1709 and M.D. in 1728. He traveled to Paris and Leyden with Pemberton to study anatomy. His appendix
to the Mathematical Tracts [32] shows “a high and surprising degree of intimacy with historical and then
current mathematical topics” [19, p. 348].

7The editorial introduction by Douglas M. Jesseph to De Motu and The Analyst: A Mod-
ern Edition, with Introductions and Commentary provides an excellent discussion of Berkeley’s cri-
tique of the calculus. See also Niccolò Guicciardini, The Development of the Newtonian Calcu-
lus in Britain, 1700–1800 (1989), pp. 38–45. The Jurin-Robins dispute is well documented at
http://www.maths.tcd.ie/pub/HistMath/People/Robins/RepublickOfLetters/
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his application process. Unfortunately, this appointment was blocked by Sir Robert Walpole
who still felt the impact of Robins’s attack. The mathematics professorship went to Mr.
Derham, who served 1741–1743. He was so unknown that even his first name is unknown.8

The professorship of the artillery staff went to John Muller (1699–1784), several of whose
works were purchased by Sylvanus Thayer for the USMA library. One of these is the six
volume set A System of Mathematics, Fortification and Artillery, . . . For the Use of The
Royal Academy of Artillery at Woolwich (1756-1757).

Instruction at Woolwich, both theoretical and practical, began in the fall of 1741 with
Muller and Derham as masters. The King’s Warrent called for instruction “in the several
parts of Mathematics necessary to qualify them [the cadets] for service of the Artillery, and
the business of Engineers” and also called for “Rules, Orders, and Regulations” to be drawn
up by the Master-General of Ordinance [13, pp. 1–2]. Details of the course in 1741 are
specific about the mathematics curriculum:

VII. That the second Master shall teach the Science of Arithmetic, together
with the principles of Algebra and the Elements of Geometry, under the direction
of the Chief Master.

IX. That the chief Master shall further instruct the hearers in Trigonometry
and the Elements of the Conick Sections.

To which he shall add the Principles of Practical Geometry and Mechanics,
applied to raising and transporting great Burthens [sic];

With the Knowledge of Mensuration, and Levelling, and its Application to the
bringing of water and the draining of Morasses;

And lastly, shall teach Fortification in all its parts. [13, p. 264].

Details are also given for instruction in gunnery, but no more mathematics is noted.
There is one glaring ommision in this curriculum — there is no calculus. The explanation is
simple. Up to this time, the Gallilean theory of gunnery, with parabolic trajectories arising
by assuming that air-resistance is negligible, could be given in purely geometric terms; there
was no need for calculus.

Having been denied the professorship, Robins sought to publish his work immediately
and so the New Principles of Gunnery appeared in 1742. In 1746, Robins was the first to
receive the Copley Medal, the highest award given by the Royal Society of London.

8It is likely that he was one of the “several children” of Dr. William Derham, F.R.S. (1657–1735), who was
the first to measure the speed of sound. The younger Derham died in 1743 [20, p. 468]. Later 19th-century
mathematics professors at Woolwich were better known. They are T. Simpson (served 1743–1761), J. L.
Cowley (1761–1773), C. Hutton (1764–1807), J. Bonnycastle (1807–1821), O. Gregory (1821–1838), S. H.
Christie (1837–1865), J. Sylvester (1855 [sic] – 1870), M. W. Crofton (1870–1884), and H. Hart (1884–??)
[13, p. 260].
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4 Editions of Robins

The first edition of the New Principles of Gunnery of Benjamin Robins appeared in 1742
[30]. It was followed by Euler’s German translation of 1745 [6]. Then there were French
editions of Robins 1742 in 1751 [31] and 1771 [33]. We have not yet seen these last two,
although we have reason to believe that there is considerable commentary in them. Robins
died in 1751 and his Mathematical Tracts of 1761 were edited by James Wilson, containing
another edition of his work. Euler’s 1745 edition was translated back into English in 1777;
however, very little of Robins’s work was included, just the enunciations of the propositions
on which Euler commented.

The history of the French editions is interesting, so we include it here: On 23 August
1774, the economist and politician Anne-Robert-Jacques Turgot (1727-1781) wrote to Louis
XVI:

The famous Leonhard Euler, one of the greatest mathematicians of Europe, has
written two works which could be very useful to the schools of the Navy and
the Artillery. One is a Treatise on the Construction and Manoeuver of Vessels;
the other is a commentary on the principles of artillery of Robins . . . I propose
that your Majesty order these to be printed. [Quoted, in English, by Clifford
Truesdell, An Idiot’s Fugitive Essays on Science (1984), p. 337]

Turgot had reason to know about these books, for at the time he was Ministre de la Marine.
He was sensitive to the impropriety of translating a work without the author’s permission so
urged the king to compensate Euler with 5,000 francs from the secret accounts of the Navy.
This French translation of Euler’s work appeared in 1783 [34].

Knowing of Napoleon’s interest in mathematics,9 it is not surprising that he read this
work. His annotations have been preserved, but unfortunately, they only deal with the first
part of the work [27]. It is likely that Euler’s mathematics was too much for Napoleon.

Robins 1742 is a small work of 152 pages. It begins with a Preface of 57 pages. There
is a great deal of information about fortification and powder which we shall ignore. But on
p. xxxix he starts talking about exterior ballistics and continues till the end, p. lvii. In this
section Robins mentions several authors (but we have been forced to conjecture the titles of
the books he intended):

• Tartaglia, Nova Scientia (1537) Questi et inventioni diversi (1546)

• Busca, Gabriello, fl. 1580, Instrvtione de bombardieri (1545). This is the first book for
the professional artilleryman [Spaulding1937, p. 98]

• Collado, Prattica manuale dell’artiglieria (1641)

9See, for example, Jacquelyn Maynard, “Napoleon’s Waterloo wasn’t mathematics,” Mathematics
Teacher, v82, n8, pp. 648–54, Nov 1989 and, Christoph J. Scriba, “Wie kommt “Napoleons Satz” zu seinem
Namen?” Historia Mathematica, 8 (1981), no. 4, 458–459.
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• Ufano, Tratado dela Artilleria y uso della platicada por el capitan Diego Ufano en las
Guerras de flandes (1613)

• Simienowicz, Artis magnae artilleriae (1650)

• Galileo, Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti
all meccanica ed ai movimenti locali (1638).

• Galeus,

• Ulrick,

• Blondel, Nouvelle maniere de fortifier les places (1684), (an allusion to Aristotle),

• Bourne,

• Eldred, William The gunner’s glasse (1646) (http://www.dimacleod.co.uk/history/glass.htm)

• Anderson, Robert. Art of Gunnery, London, 1674. See The Biographical Dictionary
of the Society for the Diffusion of Useful Knowledge, p. 567 which is on the web. He
was a weaver by trade.

• Halley,

• Newton, Philosophia naturalis principia mathematica (1687)

• la Hire (I am not sure whether it is the father or the son; the father’s lovely Allegory
of Geometry hangs in the Toledo Museum of Art).

This list is further evidence that Robins was widely read in mathematics, even if Euler
will later point out works that he should have cited in his New Principles of Gunnery.

The Preface is followed by two chapters. The first (65 pages),“On the Force of Gunpow-
der,” deals with interior ballistics, i.e., what happens inside the barrel of the gun or cannon.
The most noteworthy contribution of this chapter is his description of his ballistic pendulum,
a device which can be used to determine the muzzle speed of shot.10 This was a tremendous
advance. Previously, muzzle speed was computed from the range of the projectile (just as
we do in calculus classes today), but under the assumption that there is no air resistance.
In 1809, the president of the Russian Commission on Artillery, I. G. Gogel’ wrote that this
work, together with later work of D’Arcy and Hutton “‘put all the discoveries of earlier
artillerists in the shade” [21, p. 7].

The second chapter (30 pages) is entitled “Of the Resistance of the Air, and of the Track
described by the Flight of Shot and Shells.”11 It is this chapter that is of interest to us, for
it deals with exterior ballistics, the path of the projectile in the air.

10For the physics of the ballistic pendulum, see [1]
11Shot is a solid ball, of stone or iron, that is fired from a cannon. Shells are hollow balls that are filled

with powder and thrown from a mortar and are designed to burst into fragments as they ricochet along the
ground. Francis Scott Key knew we were winning when he noted the “bombs bursting in air.”

6



5 Projectiles in a Vacuum

The second chapter begins by stating that “the greatest Part of Authors” have established
that air resistance is in “the duplicate Proportion of its Velocity,” i.e., resistance is propor-
tional to the square of the velocity. Unfortunately, he does not name any of these authors.
He claims that this rule is “excessively erroneous,” and plans to show this in this work.

The chapter then consists of seven propositions, but we shall only discuss one of them.
The fifth proposition in the second chapter of the New Principles of Gunnery is a rather
unpromising result:

PROP. V. When a Cannon-Ball of 24 lb. Weight, fired with a full Charge
of Powder, first issues from the Piece, the Resistance of the Air on its Surface
amounts to more than twenty times its Gravity. [30, p. 84]

Robins argues for this proposition using experimental evidence.
The real weight of this proposition — if you will excuse the pun — is in the scholium,

an explanatory note amplifying the proposition. Robins indicates that he gave this propo-
sition (and the previous one) so that he could refute the views of the “Theorists who have
professedly written on the Subject of Gunnery” [30, p. 84]:

since, as it is agreed on all Sides, that the Track of Projectiles would be a
Parabola, if there was no Resistance, it has from hence been too rashly con-
cluded, that the Interruption, which the ponderous Bodies of Shells and Bullets
would receive from so rare a Medium as the Air, would be scarcely sensible, and
consequently that their parabolic Flight would be hearby scarcely affected. [30,
p. 85]

The proposition gives an example where the air resistance is certainly not negligible,
but Robins is an experienced polemicist and skillful writer, so he wishes to give indisputable
evidence that it is untenable to hold that air resistance is negligible. To begin this argument,
he states seven “Postulates” that govern the motion of projectiles in a vacuum. He comments
that

the Demonstrations of which may be found in almost every Writer on the common
Theory of falling Bodies. [30, p. 85]

Robins now enumerates these Postulates, most of which will be familiar to anyone who
has studied projectile motion in a calculus or physics class. We will state one of the well
known ones, and one which is not so well known:

Post. 1. If the Resistance of the Air be so small, that the Motion of a pro-
jected Body be in a Curve of a Parabola, the the Axis of that Parabola will be
perpendicular to the Horizon, and consequently the Part of the Curve, in which
the Body ascends, will be equal and similar to that in which it descends. [30, p.
85]
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Post. 5. If the Velocity, with which the Body is projected, be known, then
this greatest horizontal Range may be thus found: Compute, according to the
common Theory of Gravity, what Space the projected Body ought to fall through
to acquire the Velocity with which it is projected, then twice that Space will be the
greatest horizontal Range, or the horizontal Range, when the Body is projected
in an Angle of 45◦ with the Horizon. [30, p. 86]12

Robins plans to use these Postulates in a clever way. They all follow from the assumption
that there is no air resistance, an assumption that Robins wishes to show is wrong. While it
would suffice to show that any one of these Postulates is incorrect under the assumption that
there is air resistance, Robins opts for a much stronger argument. He will show that each
one of the Postulates is incorrect if there is air resistance. We shall give but one example of
his argument:

Prop. VI. The Track described by the Flight of Shot or Shells is neither a
parabola, nor nearly a Parabola, unless they are projected with small Velocities.
[30, p. 87]

Robins justifies this Proposition with a great deal of empirical evidence, some the result
of his own experimentation, some extracted from a wide variety of sources. Here is one
stunning example that shows how far from parabolic the path of a projectile can be:

a Musketball 3/4 of an Inch in Diameter, fired with half its Weight of Powder
from a Piece 45 Inches long, moves with a Velocity of near 1700 Feet in 1′′. Now
if this Ball flew in the Curve of a Parabola, its horizontal range at 45◦ would be
found, by the firth Postulate, to be about 17 Miles. Now all the practical Writers
assure us, that this Range is really short of half a Mile. [30, p. 87]13

The work has one more interesting proposition, namely that bullets “are also frequently
driven to the Right or Left of that Direction [which they were shot] by the Action of some
other Force.” [30, p. 91]. Today we know this as the Magnus effect, which is named after
the German physicist and chemist Heinrich Gustav Magnus (1802–1870), who made an
experimental study of the aerodynamic forces on spinning spheres and cylinders in 1852.
Before Robins, the effect had been mentioned by Newton in 1672 (apparently in regard to
tennis balls).

In concluding our discussion of New Principles of Gunnery, we must remark that Robins
is a very clear writer. He takes pains to give sound arguments — often multiple arguments
— to make his points. There is no use of higher mathematics in the book, in fact, no
mathematics beyond arithmetic — it could be understood by anyone with the willingness
to read it. The use of experimental evidence to make his points is the novel feature of the
work.

12This result is due to Tartaglia, who gives it for an arbitrary angle of projection; see Swetz in note 3.
13For a modern example, on the Apollo 14 mission which landed on the moon in 1971 the last thing Alan

Shepard did before climbing back aboard was to hit a couple of golf balls. He shanked the first but “The
next one I hit pretty flush. Here it would have gone 30 yards, but because there’s no atmosphere there, it
went about 200 yards.” [The New York Times, October 14, 2008, page D2]
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6 Euler’s Mathematicization of Robins Work

Shortly after arriving in St. Petersburg in 1727, Euler wrote a short note, “Meditatio in
experimenta explosione tormentorum nuper instituta,” (Meditation on experiments made
recently on the firing of cannon) [9]. This is paper E853 is the Eneström catalog of Euler’s
works.14

E853 has achieved lasting fame as a footnote in mathematical history by being the first
printed source in which e is used to represent the base of the natural logarithm. Euler wrote
this paper at the end of 1727 or at the beginning of 1728, when he was just 21 years old,
describing seven experiments performed between August 21 and September 2, 1727.

Euler wrote to Frederick the Great [include date] asking to develop the work of Robins:

Since this research can contribute a lot to the perfection of artillery, especially if
one took the trouble to develop it better, and illuminate it fully, I judge that the
public would be able to profit rather considerably . . . [11, p. 309]; quoted from
[42, p. 300].

Needless to say, Frederick agreed with this suggestion. Euler’s translation, together with
its copious annotations, expanded Robins’s work from 152 pages to a work of triple the size.15

The contrast with the original is amazing, for Euler takes full advantage of his knowledge of
higher mathematics. In the preface, Euler argues strongly for the value of calculus:

Some are of the opinion that fluxions are applicable only in such subtle specu-
lations and can be of no practical use; or, at most, whatever conclusions can be
obtained by them are owing to the well known lower parts of mathematics; but
what has just been said of artillery is sufficient to remove this prejudice. It may
be affirmed, that many things which depend on mathematics cannot be explained
in all their circumstances without the help of fluxions, and even the sublime part
of mathematics has met with difficulties that have not been fully mastered. [8,
p. 3]

Also in the Preface, Euler makes some comments that seem wholly inconsistent with
what we know about his generous personality and Christian charity. He writes that Robins
is “unacquainted with several books on the theory of artillery” or else he wants to “exalt the
merit of his own discoveries” [8, p. 11]. While this judgment is harsh, it is justified, for Euler
mentions works of Huygens, Keile, Hermann, Taylor, de la Hire, Papin, Brachus, Johann
Bernoulli and Daniel Bernoulli. Note that this list is disjoint from what Robins read early
in his life.

14The Euler Archive, http://www.math.dartmouth.edu/ euler/, established and maintained by Dominic
Klyve and Lee Stemkoski, then graduate students at Dartmouth College. It is the best place to find copies
of Euler’s works, including secondary references and translations when available.

15Ambiguity about the size is due to the edition. Euler’s 1745 German edition contained 720 pages, but
that includes the translation of the work of Robins as well as Euler’s comments, and the pages are small.
The English translation of this (1777) contains 423 pages. It contains just the statements of the propositions
of Robins, not the text. The 1922 reprint of the German in Euler’s Opera omnia contains 409 pages.
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The “Zweyte Anmerkung” for Proposition V is of exceptional interest. Here Euler proves
each of the seven Postulates that Robins states about the movement of projectiles in a
vacuum. But, contrary to what had been done before, Euler makes good use of the calculus
in deriving these Postulates. While we need to examine a number of books on gunnery
that were published before Euler’s work in 1745, we are fairly certain that this is the first
time that anyone has used the calculus to explain the Gallilean theory of projectile motion
without air resistance.

It takes Euler six pages to derive all seven of the Postulates of Robins, so we cannot
give the details here. But we shall sketch the argument. In some ways, Euler’s derivations
are remarkably similar to what we would do in a calculus class today, but there are some
significant differences. First we shall consider the similarities.

Euler sets up a coordinate system and then resolves the initial velocity into horizontal
and vertical components (he does not use this vocabulary). Then he considers the velocity
at an arbitrary point on the trajectory (we would start with the acceleration due to gravity,
but he does not). When he integrates the horizontal component he ignores the constant
of integration because he knows that, since there is no horizontal force, the position is
simply time times velocity. For the vertical component he definitely considers the constant
of integration. Of course, his results agree exactly with what we would do today.

It is interesting that Euler takes the sine of 90◦ to be 1. This is a change from the old
way of doing trigonometry, but then this paper was written at the same time that Euler was
writing his Introductio in analysin infinitorum (1748), the work that introduced trigonometry
on the unit circle.

7 Projectiles with air resistance

In Proposition 6 Robins left no doubt about the significant effect that air resistance has
on military projectiles. Although it would have been sufficient to show that any one of his
seven postulates fails, he empirically demonstrated that none of the postulates hold for a
projectile in air. Now it is Euler’s turn to provide mathematical support. In his analysis
Euler uses some fairly sophisticated and complicated approximation methods.

First Euler derives the equations of motion for horizontal shot, then for a vertical shot.
Lastly he attempts to derive equations for a shot made at an oblique angle to the horizon.
(See! Easy as 1–2–3! Well, if you are Euler it is.) These cases are treated in Annotations 1,
2, and 3. His derivations fill 29 pages in Euler’s translation of Robins, so we can only sketch
the high points.

Remark I

Suppose the ball is fired horizontally from E to F . If the distance EF is not too great,
the ball will not descend far. Such a shot is called point-blank.16 But the ball does fall

16The word is due to Tartaglia. He measured the elevation of a gun with a gunners quadrant. The long
arm was laid in the cannon barrell. It was conneced to a shorter arm by a scale in the shape of a quarter
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somewhat, say to G, a point directly below F . The angle ∠FEG is very small. Consider
an arbitrary point P on EF and a point directly below, M , to which the ball will fall as it
moves from E toward P . Now we shall let Euler speak for himself:

Figure 1: A point-blank shot

“the line PM will be described by the action of gravity, which amounts to 15.625
Rhynland feet in a second. Let b be the height from whence a body must fall
to acquire the velocity, which the body is projected with from E; let moreover
the diameter of the ball = c, and the matter of which the ball consists n times
heavier than air, let the shot in the time t advance to M or P , and let EP = x,
PM = y, and the velocity of the ball =

√
v, since now PM = y is the space

through which a body will fall in the time t, so shall y = t2/4, and to determine
the motion in the horizontal line EP , it is to be observed, that the resistance in
P is expressed by a column of air, whose height is

v

2
+

v2

2h
,

[8, p. 278]

where the parameter v is the square of the velocity at P (or M), and the parameter h —
which is determined empirically — is related to the “elasticity” of the air — its ability to
fill in the vacuity formed behind the projectile as it moves.

The weight of the ball is expressed by a column of air whose height is 2
3
nc where n is the

ratio of the density of the ball to the density of air and c is the diameter of the ball. So the
ratio of the resisting force to the weight of the ball is given by

3v(h + v)

4nch
: 1.

This is the force that resists the motion of the ball, so Euler has the differential equations
that govern the motion of a horizontal shot:

dv =
−3v(h + v)

4nch
dx and dt =

dx√
v
.

circle which was marked off with 12 points. To fire at 6 points meant to fire at 45◦. To fire horizontally was
point-blank, no points [43].
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In typical Eulerian style, he makes three attempts to solve these equations. In the first, he
attempts to solve these DEs without any simplifying assumptions. He is able to solve for x
and t, but not v. In performing the integrations, his tools are limited to partial fractions
and integration by substitution. The solutions he obtains are quite complicated:

x =
4nc

3
l
b(h + v)

v(b + h)
and t =

8nc

3

(√b−
√

v√
bv

− 1√
h

A.tang.
(
√

b−
√

v)
√

h

h +
√

bv

)
.

The l in the expression for x represents the hyperbolical or natural logarithm. In the
expression for t, he notes that the arctangent is taken with respect to a circle of radius 1.
That he feels obligated to make these remarks is indication that the notions have not yet
become commonly accepted in the mathematical community.

Realizing that this solution is not as satisfactory as he wishes, he introduces a simplifying
assumption, namely that

exp
( 3x

4nc

)
= 1 +

3x

4nc

Keeping only two terms of the exponential series quickly gives a solution: x =
√

bx. But
this cannot be correct for this solution represents uniform motion. This is a nice example
of Euler showing us his path to discovery. Even if it does not work, we can learn something
from it. Need to cite Jerry Alexanderson’s paper about Euler in Math Mag as he makes a
comment about Euler showing his tracks.

In his third, and final attempt to provide a satisfactory solution, Euler takes three terms
of the exponential series:

exp
( 3x

4nc

)
= 1 +

3x

4nc
+

1

2

( 3x

4nc

)2

.

This time he is able to solve for the time t to reach the point P , the angle through which
the shot has fallen, and the velocity of the shot at P :

t =
x√
b

+
3(b + h)xx

16nch
√

b
+

3(hh− bb)x3

128nncchh
√

b
.

AnglePEM = A.tang.
( x

4b
+

3(b + h)xx

32ncbh

)
.

and

v = b− 3b(b + h)x

4nch
+

9b(b + h)(2b + h)xx

32n2c2hh
.

Curiously, Euler makes no comments about the connections between these three attempts
to solve the differential equations.

He concludes his first annotation with some numerical examples.
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Remark II

Euler’s interest in ballistics began during 1727, the first year that he was at the St. Petersburg
Academy of Sciences. At the age of 20, Euler was present when, under the direction of
General Gunther, the Master General of Ordnance in the Russian artillery corps, Daniel
Bernoulli conducted several experiments involving cannon. Bernoulli, then age 27, published
his results in the second volume of the Saint Petersburg Commentarii17 and then described
them again in his Hydrodynamica (1738)18 his famous book on fluid dynamics, his most
important work. He fired a small artillery piece vertically, timing the duration of the flight
of the shot. More importantly, using Newton’s quadratic law of air resistance, Bernoulli
solved the differential equations of motion to compute the muzzle speed of the artillery piece
[42, p. 284].

In this annotation, Euler considers a shot that is fired vertically. The mathematics here
is similar to that in Remark III so we move immediately to it.

Remark III

Finally, Euler is ready for the general case, where the shot is fired at an oblique angle to the
horizon.

The Track described by the Flight of Shot or Shells is neither a Parabola, nor nearly a
Parabola, unless they are projected with small Velocities.

Figure 2: Shot at an angle

17“Dissertatio de actione fludiorum in corpora solida et motu solidorum in fludis,” Comentarii Acade-
memiae Scientiarum Imperialis Petropolitanae, II, 1727 (1729), 304–342 and “Dissertationis de actione flu-
idorum in corpora solida et motu solidorum in fluidis continuatio,” Commentarii, III, 1728 (1732), 214–229.
Euler only cites the first part of the paper.

18There is an English translation by Thomas Carmody and Helmut Kobus, Dover Publications, 1968.
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In this section Euler endeavors to determine, or at least closely approximate, the path of
a projectile that is shot at an angle. We assume that the projectile is spherical with diameter
c, that its trajectory lies in a plane, and that the only forces acting on it are the force due
to gravity and a resistant force due to the air. We also assume that this resistant force acts
in a direction parallel and opposite to the direction of travel.

We consider the projectile at point M on its trajectory (see Figure 2) and its motion to
point m over an infinitesimally small time interval dt. Thus its path from M to m may be
assumed to be a straight line. The ball’s velocity at M is denoted by

√
v where v represents

the height from which the body must fall to attain its velocity at M .19 This velocity may
be decomposed into its horizontal and vertical components.

As the ball moves from M to m the velocity will be diminished by both gravity and the
resistant force due to air. If we let n denote the ratio of the density of the ball to the density
of air, then, as Euler has previously discussed (Prop.II, Remark II), the weight of the body
in air will be diminished by the weight of a quantity of air with the same volume as the body
which displaces it. Thus, the vertical component of the velocity will be diminished by this
gravitational force by (1− 1

n
). Euler denotes20 the term 1− 1

n
by g.

Euler has also previously established (Prop. I & Prop. III, Note II) that the resistant

force on a spherical projectile of diameter c is given by 3v(h+v)
4nch

where h is the height of a
column of air whose pressure is equal to that of the atmosphere. Thus the vertical component
of the velocity will be diminished further by the vertical component of this resistant force,
3v(h+v)

4nch
sin φ and the horizontal component of the velocity will be diminished by the horizontal

component of the resistant force 3v(h+v)
4nch

sin φ, where φ = ∠mMr in Figure 2.
Thus, we arrive at the following system of differential equations

d[v(sin φ)2] = −g dy − 3v(h + v) sin φ

4nch
dy, (1)

d[v(cos φ)2] = −3v(h + v) cos φ

4nch
dx. (2)

Find the differentials of the left-hand sides of (1) and (2) and substitute dx = ds cos φ
and dy = ds sin φ into the right-hand sides to get

(sin φ)2 dv + 2v sin φ cos φ dφ =

(
−g sin φ− 3v(h + v)(sin φ)2

4nch

)
ds, (3)

(cos φ)2 dv − 2v sin φ cos φ dφ = −3v(h + v)(cos φ)2

4nch
ds. (4)

After some substitutions and algebraic manipulations with equations (3) and (4) we arrive
at the differential equation

dv = −g dy − 3v(h + v)

4nch
ds. (5)

19This strange way of expressing velocity goes back to Galileo. The problem was that it was difficult to
measure short time intervals and hence velocity. See [28]

20Not to say that gravity is equal to this, but perhaps to indicate that this factor arises due to gravity. Its
value will be determined empirically.
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Euler now lets dy = p dx and shows that

v =
−g(1 + p2)dx

2 dp
. (6)

Making the substitution dp = q dx, it then follows from (6) that

dv = −g dy +
g(1 + p2)

2q2
dq. (7)

Comparing (7) to (5) we see that

g(1 + p2)

2q2
dq = −3v(h + v)

4nch
ds

We can now show that

4nc

3
dq = (

√
1 + p2 dp− g(1 + p2)

√
1 + p2

2qh
dp. (8)

Now, if we could write q as a function of p, then if follows from dx = dp
q

and dy = p·dp
q

that

x =

∫
1

q
dp and y =

∫
p

q
dp. (9)

In order to determine our constants of integration we can use the initial values given at point
E, the beginning of the motion:

1. x = 0;

2. y = 0;

3. p = dy/dx = tan θ;

4. q = −g(1+p2)
2b

= −g
2b(cos θ)2

.

Euler notes that the integrals in (9) cannot be found in closed form, so he will attack with
approximation methods. He has an arsenal of substitution and series techniques up his
sleeves, and before he’s done Euler will demonstrated his facility with a significant number
of them. One would be hard pressed to call the mathematics that follows elegant. (Perhaps
this is what Hardy was thinking of when he described ballistics as “repulsively ugly”?) It is
clear that Euler is trying every trick he knows to force a useful solution to the problem.

In his first attempt at a solution Euler supposes that q can be written as a function of p
and uses the substitutions u = p/

√
1 + p2 and q = 1/r. In this case it follows that r can be

written as a function of u, and can thus be given in the form of a power series

r = a + Au + Bu2 + Cu3 + ... (10)
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Now, equation (8) can be rewritten to obtain

0 = k(1− u2)3dr + r2(1− u2) du− r3

f
du (11)

where k = 4nc/3 and f = 2h/g. We can replace r and dr in (11) with their respective series
expansions given by (10) to obtain a differential equation in u. By using the initial value for
u, i.e., u(0) = sin θ, we can solve for A, B, C, ... in terms of a, k, and f . In particular,

A =
a2(a− f)

kf
, (12)

B =
a3(3a− 2f)(a− f)

2k2f 2
, (13)

C =
a2(3a− 2f)

3kf
+

a4(a− f)(15a2 − 20af + 6f 2)

6k3f 3
. (14)

Using our substitutions for p and q and series (10), the integrals (9) can now be written as

x =

∫
1

(1− u2)3/2

(
a + Au + Bu2 + Cu3 + ...

)
du (15)

and

y =

∫
u

(1− u2)2

(
a + Au + Bu2 + Cu3 + ...

)
du. (16)

Thus, integrating term by term using known formulae and using the given initial values, we
can give series formulations for x and y in u where the only coefficient to be determined is
a, as we have already demonstrated how all other coefficients can be solved in terms of a.
Moreover, since u(t) = sin φ, we can rewrite these series expansions for x and y in terms
of trigonometric functions involving φ. Finally, the parameter a can be estimated from the
equation:

−2b

g
cos2 θ = a + A sin θ + B sin2 θ + C sin3 θ + ... (17)

But, Euler is not happy with this result. He states

As k increases, A, B and C diminish; but we see by this method of ap-
proximating, C cannot be less than A; for which reason we must try to get an
approximation which will answer better.

So, Euler is going to attack again, this time starting with (11) written explicitly in terms
of φ. If we substitute u = sin φ and du = cos φ dφ into (11) and simplify we obtain

k cos5 φdr + r2 cos2 φ dφ =
r3

f
dφ (18)

from which it follows that

x =

∫
r

cos2 φ
dφ =

r sin φ

cos φ
−

∫
sin φ

cos φ
dr (19)
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and

y =

∫
r sin φ

cos2 φ
dφ =

r

2 cos2 φ
− 1

2

∫
1

cos2 φ
dr (20)

where r = 1 + P + Q + .... After several integrations and some manipulation we obtain
expressions for P and Q in terms of the variable φ and the parameter a, as well as an
indication of how to find further terms if desired.

At this point Euler faces some very complicated equations. It appears that he is defeated
for the time being, at least if he intends to find any sort of applicable results. But he will
not completely surrender and concludes this “Remark” with a final endeavor to salvage some
sort of useful result and arrive at some sort of final conclusion.

Euler notes that if there is no resistance, then we would have r = a in which case the
curve would be a parabola. Thus, if the resistance is small we could estimate r by r = a+P .
In this case Euler is able to obtain some rather complicated expressions for x and y in terms
of φ, as well as an estimate for a. Euler suggests that the expressions thus obtained for x and
y might be used to estimate the range of such a projectile. He tells us that in order to find
the range we need put y = 0 and find the angle of the trajectory at impact. However, he then
asserts, “The equation which determines this angle is extremely complicated; and, indeed,
the angle cannot be found otherwise than by a very prolix approximation.” (Indeed, if Euler
thinks that the approximation method to be used would involve an inordinate amount of
effort, then we mere mortals should despair.) But, if we could find a value for this angle,
then we can substitute it into the equation for x and thereby determine the range EF .

However, all is not lost! Euler tells us that we can find an equation expressing the relation
between x and y via another approximation and our mathemagician presents us with the
equation

y = x tan θ − gx2

4b cos2 θ
− gx3

12bk cos3 θ
+

g2x4 sin θ

96b2k cos4 θ
+ ...

− x3

6fk cos3 θ
+

gx4 sin θ

16fk cos4 θ
− gx4

48bk2 cos4 θ
− x4

24fk2 cos4 θ
+ ...

We are told that if the resistance be very small then this equation will very nearly describe
the trajectory. Moreover, the range EF may also be estimated to be about

2b sin 2θ

(
1− b(b + h) sin θ

nch

)
given that g ≈ 1 in this case. Note that the range in the case with no resistance would
have been EF = 2b sin 2θ. So, Euler’s final conclusions for the time being are that if the
resistance is small, then

1. The range at any given angle of elevation will be less than that of the case with no air
resistance;

2. As we increase the angle of elevation, the difference between the actual range and the
range in the non-resistant case will increase;
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3. The greatest range will occur at some angle less than 45◦.

Moreover, if nc is much greater than b, i.e., we have a very large and/or very heavy shot
moving at a very slow speed, we can estimate the angle that yields maximum range by

sin θ =
1√
2
− b(b + h)

8nch
.

Unfortunately, this estimate is not useful in the case under consideration in Robins’s Propo-
sition VI and improvements must wait for a later date.

We note that in his later work Euler does eventually extract a useful method for obtaining
fairly accurate projections for the ranges of various shot. This method is used to create
detailed artillery tables, and hence we observe some of the benefits of using calculus in
ballistics.

If you found these deductions difficult to follow, you are in good company. After his Neue
Grundsätze der Artillerie was published in 1745, Euler sent a copy to Johann Bernoulli, his
teacher and grand old man of mathematics. Bernoulli responded in a letter of 23 September
1745:

I have recently received two treatises that you kindly sent me, one on cannons
and the force of powder, the other containing the theory of the motion of planets
and comets. For this double gift I am deeply grateful. I have now nearly finished
reading the first of these books, but I have relied completely on the correctness
of your computations and haven’t verified them myself, for many of them seem
too complicated to me.21

8 Impact

8.1 The Impact on Ballistics:

After Euler, there were two tracks in ballistic research, one theoretical, one experimental. In
the 18th-century, important experimental work was done by D’Arcy in France and Hutton
in Britain. Theoretical work was done by Borda, Lambert, and Legendre. The discussion of
these developments must await further study.

For the modern theory of ballistics, see the books by Bliss (1944) [3], McShane, Kelley
and Reno (1953) [25], and especially the modern bible of McCoy (1999) [24].

8.2 The Impact on Mathematics:

In the Neue Grundsätze der Artillerie “Euler’s primary agendum was to explicate the power
of the differential and integral calculus in analyzing practical engineering problems.” [42, p.
290]. In this he succeeded admirably.

21P. Fuss, Corréspondance mathématique et physique, vol. 3, p. 597. Quoted by Mandryka [21, p. 15]
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The Euler-Robins work was instrumental in influencing a shift from thinking about bal-
listics problems empirically to thinking about them analytically. Prior to their work, the
general shape of the trajectory was important only in as far as it assisted in interpolating
ranges from known experimental data. Thus, it didn’t really matter that it was not accurate,
because it was good enough. But with advances in fluid dynamics along with Euler’s math-
ematization of the situation, here finally is a problem that mathematicians and scientists can
sink their teeth into, eventually leading to the Navier-Stokes equations and the still open
problem (of the century) of their solution in more than just a few special cases. Only after
their work appears do we begin to see useful applications of theory in ballistics.

8.3 The Impact on Teaching:

We have noted in §3 the Woolwich curriculum in 1741 — before Euler’s Neue grundsätze
der artillerie appeared in 1745. To show how this impacted the teaching of mathematics, we
give the Woolwich mathematics curriculum in 1772:

• The Elements of Euclid

• Trigonometry applied to Fortification, and the Mensuration of Superficies and Solids

• Conic Sections. Mechanics applied to the raising and transporting heavy bodies, to-
gether with the use of the lever pulley, wheel, wedge and screw, &c.

• The Laws of Motion and Resistance, Projectiles, and Fluxions.

One notes a significant change from the 1741 curriculum: Fluxions — the calculus — is
taught to all students. This is a direct result of the work of Robins and Euler on gunnery.
Artillery schools across Europe saw the necessity of teaching calculus. Such schools included
Piedmont-Savoy which began teaching calculus in the 1750s, the Royal Artillery and Military
Academy in Turin where Lagrange taught, the Prussian artillery corps where Jacobi and
Templehof taught, the French regimental school at Auxonne, and the Australian Artillery
Academy, to give a few examples [40] [42].

Calculus was taught at the École Polytechnique from its inception in 1794. Sadly, the
same cannot be said of the United States Military Academy. Alden Partridge tutored a
few cadets in calculus about 1807 and Andrew Ellicott taught a class calculus in 1813, but
calculus was not taught to all cadets until the mid 1820s. The reason for this was not
that the faculty did not see the need to teach calculus to future artillery officers, but that
the incoming cadets were so weak in mathematics that there was no possibility of teaching
calculus to all of them in the 1810s.

The utility of Euler’s interior ballistics consequently helped convince virtually
the entire European military community of the late eighteenth century (even the
Ottoman Turks), to incorporate the analytical calculus and rational mechanics
in the education of their artillery officers by the 1790s. One may thus conclude
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that Euler was an integral member of the strategic mathematical fraternity that
commenced with Archimedes in the Hellenistic era, was revived by Tartaglia,
Guidobaldo del Monte and Galileo during the Italian Renaissance, and achieved
such terrifying heights with von Neuman and Wohlstetter during the Cold War.
[42, p. 299].
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7. Euler, Leonhard, “Recherches sur la véritable courbe que décrivent les corps jéttes
dans l’air ou dans un autre fluide quelconque,” Memoires de l’academie des sciences
de Berlin, 9, 1755, 321–352 = Opera Omnia: Series 2, Volume 14, 413–337. E217.
English translation in [8].

8. Euler, Leonhard, The true principles of gunnery investigated and explained: com-
prehending translations of professor Euler’s Observations upon the new principles of
gunnery, published by the late Mr. Benjamin Robins, and that celebrated author’s
Discourse upon the track described by a body in a resisting medium . . . together with
tables calculated for practice, the use of which is illustrated by proper examples: with
the method of solving that capital problem, which requires the elevation for the great-
est range with any given initial velocity London: Printed for J. Nourse, bookseller to
his Majesty, 1777. The translator, Hugh Brown of the Tower of London arsenal, is
sometimes listed as the author.

9. Euler, Leonhard, “Meditatio in experimenta explosione tormentorum nuper instituta,”
(Meditation on experiments made recently on the firing of cannon), Opera Postuma 2,
1862, pp. 800–804; reprinted Opera Omnia, Series 2, Volume 14, pp. 468–477. E853.

10. Euler, Leonhard, Neue grundsätze der artillerie aus dem Englischen des Herrn Ben-
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