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ABSTRACT 

The Crystal Box Process provides a forum to collaborate 
ideas while examining the validity of models of interest.  
In this paper the model of interest is a Dynamic Decision 
Network (DDN).  DDNs are new decision tools that can 
help decision makers make optimal and timely decisions 
given information overload. DDNs have been proven to 
be a good approximation to Dynamic Programming, the 
gold standard in decision making optimization, but only 
for simple decisions. Exploration with agent-based 
simulation (ABS) can scope and validate the DDNs 
approximation for complex decision problems. This paper 
explains the Crystal Box Process, and how it is 
implemented through the use of ABS to examine some 
DDN models developed for military decision makers. 
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Simulation (ABS), Crystal Box, Data Farming, Design of 
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1.  THE CRYSTAL BOX PROCESS 1  

The Crystal Box Process provides a forum to share ideas, 
successes, and failures among colleagues.  In this paper, 
this process is applied to Dynamic Decision Network 
(DDN) models in order to validate their accuracy.  The 
motivation behind creating the Crystal Box Process was 
to eliminate the stove pipe or black box mentality to 
solving problems, by promoting collaboration where 
ideas are shared.               
 

           

 

                                                 
1 The Crystal Box Process seemed an appropriate 

name after attending a DoD presentation entitled the 
Glass Box.   The Glass Box gained origin from "Battelle 
PNWD,” originally funded by the Advanced Research 
and Development Agency's (ARDA) Novel Intelligence 
from Massive Data (NIMD) program. 

 

2.  CRYSTAL BOX OBJECTIVES 

It is our goal in this paper to show how the significant 
factors in the DDNs can be determined.  The Crystal Box 
Process openly invites/permits others to model scenarios 
in another venue in order to validate, correct, or narrow 
the focus of the DDNs for future work.  Specifically, the 
current problem statement is as follows:  How will 
Agent-Based Simulations (ABS), specifically, Map 
Aware Non-uniform Automata (MANA), validate the 
DDN’s effectiveness?  The scope of this problem is to 
create a simulation vignette in MANA that models a 
simple warfighting scenario, which replicates the same 
scenario previously modeled as a DDN.  Using a Nearly 
Orthogonal Latin Hypercube design of experiment, the 
intent is to datafarm over various parameters and then to 
perform a regression analysis in an attempt to validate the 
parameters in the DDN.  Exploratory analysis combined 
with a regression analysis, scoped by specific measures of 
effectiveness (MOE), provides a comparison between the 
results from datafarming and the DDN output.  This 
comparison identifies significant factors in the DDN 
models. 
 

3.  AGENT BASED SIMULATIONS 

Agent-based Simulation (ABS) is a low-resolution 
simulation that compliments and augments previously 
established more computationally intensive physics-based 
simulation models.  The role of ABS is not to replace 
high-resolution models but to support them.  Over the 
past few years, ABS has increasingly proven useful to the 
Department of Defense (DoD) in primarily two areas.   
The first is to use ABS in an exploratory analysis in order 
to gain insights and to narrow the focus of seemingly 
endless possibilities of factors, parameters, and variables; 
this expedites building high-resolution physics-based 
simulations [1] which in the end saves time and money 
on the front end of a simulation project.  The second area 
is to use ABS to offset timely resource intensive key 
battlefield objectives that otherwise require excessive 
recourses in physics-based models.   



ABS offers quick scenario generation, fast run times, and 
rapid data turnaround times, thereby allowing the analyst 
to consider many alternatives in a short amount of time.  
These ABS characteristics enable us to concentrate on 
possible insight, surprise, and outliers that may arise in 
the analysis.  In addition, ABS compliments and 
augments physics-based models permitting analysts to 
examine the problem over a greater range of plausible 
possibilities, while helping to fix the aforementioned 
quantities [2].   
 

4.  MAP AWARE NON-UNIFORM AUTOMATA 

We chose Map Aware Non-Uniform Automata (MANA) 
as the agent-based simulation-modeling tool for this 
research.  MANA’s individual agent and squad situation 
awareness (SA) aptitude, coupled with its networked 
communication parameters support use of this tool to 
model scenarios also modeled by the DDNs. 

Using Lindquist’s explanation [3] of each word in the 
acronym MANA, we have: 

• Map Aware — Agents are aware of and 
respond to, not only their local surroundings and terrain, 
but also a collective registry of recorded battlefield 
activities. 

• Non-Uniform — Not all agents move and 
behave in the same way (much like soldiers, sailors, or 
airmen). 

• Automata — Agents can react 
independently to events, using their own “personalities.”  
Personalities, in general, are propensities that guide an 
agent’s actions to move. 
 
Analysts use MANA for two reasons.  The first is 
because the behavior of the entities within a combat 
model (both friend and foe) adds possibilities to the 
analysis of the possible outcomes.  The second is because 
analysts have limited time to determine particular force 
mixes and each side’s combat effectiveness necessary for 
programming into higher resolution models [2]. 
 

5.  DYNAMIC DECISION NETWORKS 

DDNs solve a specific class of decision problems that are 
complex and repetitive in nature by merging concepts of 
Bayesian networks [4] and influence diagrams [5].  For a 
full explanation of DDNs refer to Kobylski [6].  DDNs 
can be very efficient for complex decision problems and 
thus a good alternative for decision makers where there is 
a lot of information and time is of the essence.  They are 
an ideal aid for a decision maker faced with multiple 
uncertain variables, conflicting objectives, and many 
opportunities to collect information.  The DDNs provide 
insights not only into what decisions to make, but also 
when to make them. 

For simple decision problems, DDNs were shown by 
Kobylski to be a very good approximation to dynamic 

programming (DP) [7], the “gold standard” in decision 
making optimization.  Unfortunately, DP is highly 
intractable and inefficient for even the simplest of 
decision problems and thus is not a realistic decision tool 
for use in military decision making. 
 

6.  SCENARIO 

The scenario used in this paper involves the use of 
portable sensors2 and is illustrated in the MANA 
Scenario Screenshot shown in Figure 1.  In this scenario, 
a platoon leader is tasked with keeping a route clear 
during a dignitary visit.  Two to three days ahead of the 
visit, the platoon leader clears the area and posts single 
sensors to monitor high threat locations.  At some point 
prior to, or during the visit, an alarm goes off, or the 
sensor goes dead, and the platoon leader must decide if it 
is necessary to send troops to investigate and re-clear the 
locations. 

 

 
Figure 1.  MANA Scenario Screenshot 

 

For the simulation of this scenario, the dignitary who is 
accompanied by troop escorts travels along a route 
extending from the upper left hand corner of Figure 1 to 
the upper right hand corner of Figure 1.  In the middle of 
the screen there are three buildings.  Insurgents enter the 
building in order to gain a clear line of site and kill the 
dignitary traveling along the route.  In each building there 
exist sensors with alarms to identify threatening 
insurgents to the platoon leader. 
 

7.  ANALYSIS 

Proper selection of the MOEs focuses the analysis. The 
need to accomplish the mission in the given scenario 

                                                 
2 The sensor scenario was developed by Brian 

Souhan, United States Military Academy. 

 



assists in the selection of MOEs.  The mission is to keep 
the buildings clear while keeping the dignitary alive.  
Hence, the MOEs which quantify the mission 
accomplishment for this analysis are:  survival rate of 
dignitary to reach the endpoint (final waypoint) and the 
percentage of Red insurgents killed in buildings (ability 
for Blue to re-clear a building). 

Using a Nearly Orthogonal Latin Hypercube (NOLH) 
DOE, we examined 18 uncorrelated factors which 
resulted in 129 design points.  Figure 2 outlines the 18 
uncorrelated factors examined.  We ran 30 replications of 
the simulation for each design point for a total of 3870 
simulation runs.     

 
Factors used for Data 

Farming (Terms found in 
MANA)

Fuel Tank Capacity for Sensor I

Fuel Tank Capacity for Sensor II

Fuel Tank Capacity for Sensor III
Latency for Ghost Sensor Agents 

Communication

Movement Speed for Dignitary
Non Default Movement Speed for 

Reaction Teams

pk for Red Insurgent I

pk for Red Insurgent II

pk for Red Insurgent III
Sensor Capabilities for Red 

Insurgents I, II, III
Home, Way Point 1, Way Point Final 

for Blue Route of March
Concealment for Sensors I, II, and, 

III
Number of Agents for Rain and 

Wind
Number of Agents for Electrical 

Storm
Number of Agents False Alarm 

Tripper
Number of Agents for Sensors I, II, 

and III
Range Transmission for Sensor I, II, 

and III
Reliability Transmission for Sensor I, 

II, and III

Signal Strength of Each Sensor
Simulates Obstructions within Signal Path:  i.e. Extra 

Buildings, Radio Interference, Jamming

Simulates Clear LOS vs. Obstructed LOS, i.e. clear 
LOS has pk = 1, Obstructed LOS has pk less than 1
Simulates LOS and Distance Between Threat and 

Dignitary

Simulates the Probability of a the Sensor Alarm 
having a False Positive 

Number of Sensors Placed in Each Building

Simulates Distance Reaction Teams Needed to Travel 
to Re-Clear Threat

Simulates Insurgents Ability to Disarm Each Sensor
Increase Probabilities in Rain and Wind Setting off the 

Sensor Alarm
Increase/Decrease Probabilities in Electrical Storm 

Setting off the Sensor Alarm

Explanation of Factors                  
(Terms found in DDN)

Initial Battery Life of Sensor, (AKA Dead Sensor)

Simulates Clear LOS vs. Obstructed LOS, i.e. clear 
LOS has pk = 1, Obstructed LOS has pk less than 1
Simulates Clear LOS vs. Obstructed LOS, i.e. clear 
LOS has pk = 1, Obstructed LOS has pk less than 1

Simulates Size of Area:  How Large an Area is that a 
Team Needs to Reclear

Initial Battery Life of Sensor, (AKA Dead Sensor)

Initial Battery Life of Sensor, (AKA Dead Sensor)
Possible Decision to Delay Sending Troops to re-set a 

Dead Sensor
Simulates LOS from Reds Location / Location of 

threat / Type of Threat

 
Figure 2.  Eighteen Uncorrelated Factors  

 

Throughout the analysis, we discovered some insight and 
surprise that both complemented the initial DDN model 
as well as suggested possible contradictions or 
improvements needed to the original DDN model.   

Exploratory analysis showed that decisions resulting in 
reaction teams spending more time re-clearing locations 
increased the survival rate of the dignitary. To our 
surprise, we found that sensor alarms triggered due to 
inclement weather, even while the building was clear of 
insurgents, caused troops to re-clear buildings and this 
ultimately led to the increased survival rate of the 
dignitary.  The significance of the inclement weather 
factors contradicted the original DDN model.  According 

to the DDN, an increase in wind and rain, given a vacant 
building, did not yield a decision to re-clear the building 
with reaction teams.  

In the simulation, the triggered alarms due to weather 
caused the platoon leader to send reaction teams to re-
clear the building.  Hence, decisions yielding the reaction 
teams to spend more time re-clearing buildings increased 
the survival rate of the dignitary.  We observed in the 
simulation that this occurred because the reaction teams 
were already present in the building to immediately 
intersect the arrival of any insurgents.  Otherwise, the re-
clearing teams had to travel over a greater distance after 
reacting to the insurgents triggering the building’s 
sensors, and eventually arriving after the insurgents 
successful fires upon the dignitary.   

The lesson learned is that the reaction teams must know 
ahead of time that there is a need to patrol a building 
prior to the insurgent’s arrival.  Militarily, this means that 
an increased patrolling of specified threat locations 
increases the survival rate of the dignitary.  The bottom 
line is that the teams need to be more proactive rather 
than reactive. 

We claim that modeling a single sensor inside a high 
threat area is possibly not as sensible as other solutions.  
Rather, setting multiple alarms outside the location may 
facilitate identifying the insurgents’ arrival path, and 
predict the specific location where the insurgents will 
enter in the near future.  Our recommendation to the 
DDN modeler was to set up multiple alarms outside the 
buildings, so that when triggered, they ultimately predict 
the insurgents’ route to a specific building.  This 
recommendation to improve the DDN model would not 
have surfaced without analyzing the given surprise 
pertaining to the weather factors. 

Exploratory analyses also showed that a shift from a clear 
line-of-sight (LOS) to an obstructed LOS between a Red 
insurgent and the Blue dignitary increases the survival 
rate of the dignitary.  This is a simulation discovery 
complimenting the DDN model.  It suggests that a 
decreased LOS from the insurgent to the dignitary 
reduced the threat level to the dignitary.  This observation 
was measured by a significant split on this factor 
occurring in a regression analysis tree.  Similarly, the 
decision value emphasizing the need to re-clear the 
building in the DDN model decreased as the LOS 
decreased.  We claim that the value of the DDN model’s 
decision to re-clear a location is justified given its current 
parameter values.   

A regression analysis identified the most significant 
factors to include in the DDN model.  Identifying these 
significant factors provided the DDN modeler feedback 
regarding which factors should not be eliminated (or 
possibly added) when narrowing the scope of the DDN 
model.  The most significant factors measured by the 
survival rate of the dignitary in reaching the endpoint are:  
(increase) the LOS and distance between threat and 



dignitary, and (increase) the number of Blue sensors in 
locations.  The most significant factors indicated by the 
percentage of Red insurgents killed in buildings are:  
(increase) the number of Blue sensors in buildings and 
(increase) the amount of fuel (battery life) of sensors. 

We also developed the following model to quantify each 
MOE in the form of: 
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Recall that the MOEs for our scenario are the survival 
rate of the dignitary in reaching the endpoint and the 
percentage of Red insurgents killed in buildings. As 
shown in Figures 3 and 5, the coefficient of variance (R2) 
for the model describing each MOE is not high.  The 
most significant factors as measured by a t-test are also 
listed in Figures 3 and 5.  Notice these are the same 
significant factors identified in the regression analysis 
described earlier.  These factors are listed under the 
heading Parameter Estimates in Figures 3 and 5.  
Referring to Figure 2, we see that the sensor capabilities 
for Red insurgents simulates the LOS and distance 
between the threat and the dignitary, the number of 
agents for all sensors simulates the number of sensors 
placed in each building, and the fuel tank capacity for 
sensor 2 simulates the initial battery life of each sensor. 

Helping validate each model, we see that the Q-Q plots 
(Figures 4 and 6) are also reasonably good.   

 

 

Figure 3.  Model:  y = Survival Rate of Dignitary to 
Reach his Endpoint 

 

The residual plot in Figure 3 has a slight pattern to it.  
Further tests were needed to identify the goodness of fit 
for this model.  The Q-Q plot in Figure 4 suggests a well 
fitted model since the error plotted appears to have a 
normal distribution.     

 

 

Figure 4.  Q-Q Plot:  y = Survival Rate of Dignitary to 
Reach his Endpoint 

 

 



 

Figure 5.  Model:  = Proportion of Red Insurgents 
Killed in Buildings 

y

 

The lack of a pattern shown in the residual plot in Figure 
5 suggests a well fitted model and provides a plausible 
argument that the error has a normal distribution.  We 
observe a fairly good normal distribution in Figure 6, 
reinforcing this assumption, and establishing that our 
model has good parameter estimates. 

 

 

Figure 6.  Q-Q Plot:  = Proportion of Red Insurgents 
Killed in Buildings 

y

 
 
 

 

8.  CONCLUSIONS 

The most significant factors identified by the survival rate 
of the dignitary to reach his endpoint are:  (increase) the 
LOS and distance between threat and dignitary, and 
(increase) the number of Blue sensors in locations.  The 
most significant factors indicated by the Red insurgents 
killed in buildings are:  (increase) the number of Blue 
sensors in buildings, and (increase) the amount of fuel 
(battery life) of sensors. 

The above mentioned four factors found in the regression 
analysis and these same repeated factors found in the 
fitted model prove to be very significant to the DDN 
model.  Should the DDN modeler choose to narrow the 
scope of the model, he/she should not eliminate these 
four factors from the model. 

The Crystal Box Process allows all findings to be shared 
with the DDN modeler and provides the DDN modeler 
the ability to better the network model.  Similar results 
show promise with respect to the modeler’s notion to use 
certain probabilities in each model, and in turn verify the 
DDN to a certain extent.  Contradictions between model 
results provide the DDN modeler plausible insight to 
change, eliminate, or verify his/her work while ultimately 
improving the DDN model.  Identifying the most 
significant factors enables the DDN modeler to narrow 
the focus of the DDN and ultimately help decision 
makers in the future.   
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