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Vector Calculus - Stewart Chapter 16

1. Vector Fields

(a) F (x, y) = P (x, y) î + Q(x, y) ĵ = 〈P (x, y), Q(x, y)〉
(b) F (x, y, z) = P (x, y, z) î + Q(x, y, z) ĵ + R(x, y, z) k̂ = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉
(c) Gradient Fields ∇f(x, y, z) = fx(x, y, z) î + fy(x, y, z) ĵ + fz(x, y, z) k̂

2. Line Integrals 2 dimensions

(a)
∫

C
f(x, y)ds

(b) L =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt

(c) Similar arguments help us define the line integral as the following:

∫
C

f(x, y)ds =
∫ b

a
f(x(t), y(t))

√(
dx

dt

)2

+
(

dy

dt

)2

dt

(d) What if we want to parameterize with something other than t?

(e) Do a similar process, but instead:

∫
C

f(x, y)ds =
∫ b

a
f(x, y(x))

√(
dx

dx

)2

+
(

dy

dx

)2

dx

(f) We may also have to remember the equation of a line segment:

−→r (t) = (1− t)−→r0 + t−→r1

3. Line Integrals 3 dimensions

(a) Start with a plane curve C given by the parametric equations x = x(t) y = y(t) z =
z(t) a ≤ t ≤ b

(b)
∫

C
f(x, y, z)ds =

∫ b

a
f(x(t), y(t), z(t))

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt



(c) ∫ b

a
f(−→r (t))|−→r ′(t)|dt

(d) If we talk about work we remember W =
−→
F ·
−→
D

(e) We suppose that
−→
D =

−−→
PQ the displacement vector, and that

−→
F = P î + Qĵ + Rk̂.

(f) Now work can be described by:

W =
∫

C

−→
F (x, y, z) ·

−→
T (x, y, z)ds =

∫
C

−→
F ·
−→
T ds

(g) Also ∫
C

−→
F · d−→r =

∫ b

a

−→
F (−→r (t)) · −→r ′(t)dt =

∫
C

−→
F ·
−→
T ds

(h) So ∫
C

−→
F · d−→r =

∫
C

Pdx + Qdy + Rdz where
−→
F = P î + Qĥ + Rk̂

4. FTC and the line integral

(a)
∫

C
∇f · d~r = f(x2, y2)− f(x1, y1)

(b)
∫

C

~F · d~r Path Independent if and only if
∫

C

~F · d~r = 0

(c) ~F is a conservative vector field on D if
∫

C

~F · d~r is path independent.

(d) If ~F (x, y) = P (x, y)̂i + Q(x, y)ĵ is a conservative field then:

∂Q

∂x
=

∂P

∂y

(e) Page 1050 - Theorem 6

5. Green’s Theorem

(a) ∫
C

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

(b)

A =
∮

C
xdy = −

∮
C

ydx =
1
2

∮
C

xdy − ydx

(c) Holes and Green’s Theorem

6. Curl



(a) If ~F = P î + Qĵ + Rk̂ is a vector field in three dimensions and the partial derivatives of
P,Q, and R all exist, then the curl of ~F is the vector field in three dimensions defined
by:

(b)

curl ~F =
(

∂R

∂y
− ∂Q

∂z

)
î +
(

∂P

∂z
− ∂R

∂x

)
ĵ +

(
∂Q

∂x
− ∂P

∂y

)
k̂

7. More about Curl

(a) The Curl of a gradient field is 0. This is because the curl is the cross product of the
gradient with the gradient.

curl(∇f) = ∇× (∇f)

(b) So we have an extension of what we learned in Green’s Theorem. If ~F is a vector field
defined on all reals in three dimensions whose component functions have continuous
partial derivatives and curl ~F = 0, then ~F is a conservative vector field.

8. Divergence

(a) If ~F = P î + Qĵ + Rk̂ is a vector field in three dimensions and the partial derivatives
of P,Q, and R all exist, then the divergence of F is the function of three variables
defined by:

(b)

div ~F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

(c) Similar to the dot product where we get a number, divergence is:

div ~F = ∇ · ~F

9. More about Divergence

(a) If ~F = P î + Qĵ + Rk̂ is a vector field in the real three dimensions and P,Q, and R have
continuous second-order partial derivatives, then

(b)
div curl~F = 0

10. Physical description of Divergence

(a) Fluid flow again is one of the best examples. Divergence can be seen as the net rate
of change of the mass of the fluid flowing from the point P per unit volume. Or the
divergence measures the tendency of the fluid to diverge from point P.

(b) If div ~F = 0 at a point P, the the fluid is said to be incompressible.

11. Laplace Operator

(a) If we take the divergence of the gradient vector of a function of three variables, we get:



(b)

div(∇f) = ∇ · (∇f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

(c) This is often called the Laplace operator and looks like:

(d)
∇2 = ∇ · ∇

12. Vector Form of Green’s Theorem

(a) ∮
C

~F · d~r =
∮

C
Pdx + Qdy

(b) If we regard ~F as a vector field in three dimensions with the third component 0, we get:

(c)

curl~F =
(

∂Q

∂x
− ∂P

∂y

)
k̂

13. Vector Form of Green’s Theorem

(a) So:

(curl~F ) · k̂ =
(

∂Q

∂x
− ∂P

∂y

)
k̂ · k̂ =

∂Q

∂x
− ∂P

∂y

(b) We can rewrite the Green’s Theorem in vector form:

(c) ∮
C

~F · d~r =
∫∫

D
(curl~F ) · k̂dA

14. Second Vector Form of Green’s Theorem

(a) ∮
C

~F · ~nds =
∫∫

D
div~F (x, y)dA

15. Parametric Surface

(a)
~r(u, v) = x(u, v)̂i + y(u, v)ĵ + z(u, v)k̂

16. Tangent Planes

(a)

~rv =
∂x

∂v
(u0, v0)̂i +

∂y

∂v
(u0, v0)ĵ +

∂z

∂v
(u0, v0)k̂

~ru =
∂x

∂u
(u0, v0)̂i +

∂y

∂u
(u0, v0)ĵ +

∂z

∂u
(u0, v0)k̂



(b)
~n = ~ru × ~rv

(c)
~n · (~r − ~r0) = 0

17. Surface Area

(a)

A(S) =
∫∫

D
|~ru × ~rv|dA

(b)

A(S) =
∫∫

D

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dA

18. Surface Integrals

(a) ∫∫
S

f(x, y, z)dS =
∫∫

D
f(~r(u, v))|~ru × ~rv|dA

(b) ∫∫
S

f(x, y, z)dS =
∫∫

D
f(x, y, g(x, y))

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dA

19. Surface Integrals of Vector Fields

(a) ∫∫
S

~F · d~S =
∫∫

S

~F · ~ndS

(b) This is called the flux of ~F across S.

(c) ∫∫
S

~F · d~S =
∫∫

S

~F · (~ru × ~rv)dA

(d) ∫∫
S

~F · d~S =
∫∫

S

(
−P

∂g

∂x
−Q

∂g

∂y
+ R

)
dA

20. Stoke’s Theorem

(a) Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed,
piecewise-smooth boundary curve C with positive orientation. Let ~F be a vector field
whose components have continuous partial derivatives on an open region in the real three
dimensions that contains S. Then



(b) ∫
C

~F · d~r =
∫∫
S

curl~F · d~S

(a) Another way of saying this ∫∫
S

curl~F · d~S =
∫
∂S

~F · d~r

(b) If the surface is flat and lies in the xy-plane we get:∫
C

~F · d~r =
∫∫
S

curl~F · d~S =
∫∫
S

(curl~F ) · k̂dA

The vector form of Green’s Theorem.

(a) ∫∫
S

curl~F · d~S =

∫∫
D

[
−
(

∂R

∂y
− ∂Q

∂z

)
∂z

∂x
−
(

∂P

∂z
− ∂R

∂x

)
∂z

∂y
+
(

∂Q

∂x
− ∂P

∂y

)]
dA

(a) One more way ∫∫
S1

curl~F · d~S =
∫
C

~F · d~r =
∫∫
S2

curl~F · d~S

21. Divergence Theorem

(a) Let E be a simple solid region and let S be the boundary surface of E, given with
positive (outward) orientation. Let ~F be a vector field whose component functions have
continuous partial derivatives on an open region that contains E. Then∫∫

S

~F · d~S =
∫∫∫

E

div~FdV


