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1 Project Questions?

2 Guest Lecture - Friday, 26 September, Dean’s Hour
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Tangent Planes and Linear Approximations

1 Equation of a Tangent Plane:

z − z0 = fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)

2 Linear Approximation:

f (x , y) ≈ f (a, b) + fx(a, b)(x − a) + fy (a, b)(y − b)

3 Differentials:

dz = fx(x , y)dx + fy (x , y)dy =
∂z
∂x

dx +
∂z
∂y

dy

4

dz = fx(x , y)(x − a) + fy (x , y)(y − b)
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Homework Help

Questions? - Homework Help
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Objectives

The Chain Rule - 14.5
1 Use the chain rule to differentiate a function of several

variables.
2 Use tree diagrams to represent the chain rule.
3 HOMEWORK PROBLEMS: 1, 5, 11, 23, 42
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Definitions

1 Remember the Chain Rule? Some call it u substitution:

2 Suppose that z = f (x , y) is a differentiable function of x
and y , where x = g(t) and y = h(t) are both differentiable
functions of t . Then z is a differentiable function of t and

3

dz
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

4

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt
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Definitions

1 Suppose that z = f (x , y) is a differentiable function of x
and y , where x = g(s, t) and y = h(s, t) are both
differentiable functions of s and t . Then

2

∂z
∂s

=
∂z
∂x

∂x
∂s

+
∂z
∂y

∂y
∂s

∂z
∂t

=
∂z
∂x

∂x
∂t

+
∂z
∂y

∂y
∂t
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Definitions

1 Suppose that u is a differentiable function of n variables
x1, x2, ..., xn and each xj is a differentiable function of the m
variables t1, t2, ..., tm. Then u is a function of t1, t2, ..., tm and

2

∂u
∂ti

=
∂u
∂x1

∂x1

∂ti
+

∂u
∂x2

∂x2

∂ti
+ ... +

∂u
∂xn

∂xn

∂ti
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Definitions

1 Use Tree Diagrams

2 Draw branches from the dependent variable
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Implicit Differentiation

1 The Chain Rule can help us in Implicit Differentiation

2

dy
dx

= −
∂F
∂x
∂F
∂y

= −Fx

Fy
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Board Work

1 Problem 15, Page 907

2 Problem 17, Page 907
3 Problem 30, Page 908
4 Problem 35, Page 908
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Directional Derivatives and the Gradient Vector I - 14.6

1 Understand the analytic formulations and geometric meaning of
the directional derivative.

2 Determine the directional derivative of a function of two or more
variables.

3 Understand the geometric meanings of the gradient vector: A
normal vector to a surface, the direction of greatest change, a
perpendicular vector to contour curves and surfaces, a vector with
length equal to the maximum value of the directional derivative.

4 Determine the gradient vector of a function of two or more
variables.

5 Determine the tangent plane to a level surface.
6 HOMEWORK PROBLEMS: 6, 8, 11
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