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1 This Week - Parametric Surfaces, and Surface Integrals.

2 Next Week - Project Drop on Monday, Stoke’s Theorem on
Tuesday and Wednesday, Divergence Theorem on
Wednesday and Thursday, Guest Lecture on Friday:
Dr. Ben Cole - Thayer 144 - Dean’s Hour!

3 Homework 7 due Today
4 Quiz on Friday!
5 Homework 8 due next Friday, 21 November!
6 MA 206 and Physics Validation - I emailed you the info!
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Block IV - Chapter 16

1 Vector Fields - 16.1: Functions that assign vectors to points in
space.

2 Line Integrals - 16.2: Integrating over a curve.
3 Fundamental Theorem for Line Integrals - 16.3: Using FTC for line

integrals.
4 Green’s Theorem - 16.4:
5 Curl and Divergence - 16.5:

6 Parametric Surfaces and their Area - 16.6:
7 Surface Integrals - 16.7:
8 Stokes Theorem - 16.8:
9 Divergence Theorem - 16.9:
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Curl

1 If ~F = Pî + Qĵ + Rk̂ is a vector field in three dimensions
and the partial derivatives of P, Q, and R all exist, then the
curl of ~F is the vector field in three dimensions defined by:

2

curl ~F =

(
∂R
∂y
− ∂Q

∂z

)
î +

(
∂P
∂z
− ∂R

∂x

)
ĵ +

(
∂Q
∂x
− ∂P

∂y

)
k̂
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More about Curl

1 The Curl of a gradient field is 0. This is because the curl is
the cross product of the gradient with the gradient.

curl(∇f ) = ∇× (∇f )

2 So we have an extension of what we learned in Green’s
Theorem. If ~F is a vector field defined on all reals in three
dimensions whose component functions have continuous
partial derivatives and curl ~F = 0, then ~F is a conservative
vector field.
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Divergence

1 If ~F = Pî + Qĵ + Rk̂ is a vector field in three dimensions
and the partial derivatives of P, Q, and R all exist, then the
divergence of F is the function of three variables defined
by:

2

div ~F =
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

3 Similar to the dot product where we get a number,
divergence is:

div ~F = ∇ · ~F
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More about Divergence

1 If ~F = Pî + Qĵ + Rk̂ is a vector field in the real three
dimensions and P, Q, and R have continuous
second-order partial derivatives, then

2

div curl~F = 0
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Physical description of Divergence

1 Fluid flow again is one of the best examples. Divergence
can be seen as the net rate of change of the mass of the
fluid flowing from the point P per unit volume. Or the
divergence measures the tendency of the fluid to diverge
from point P.

2 If div ~F = 0 at a point P, the the fluid is said to be
incompressible.
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1 If we take the divergence of the gradient vector of a
function of three variables, we get:

2

div(∇f ) = ∇ · (∇f ) =
∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2

3 This is often called the Laplace operator and looks like:
4

∇2 = ∇ · ∇
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Vector Form of Green’s Theorem

1 ∮
C

~F · d~r =

∮
C

Pdx + Qdy

2 If we regard ~F as a vector field in three dimensions with
the third component 0, we get:

3

curl~F =

(
∂Q
∂x
− ∂P

∂y

)
k̂
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Vector Form of Green’s Theorem

1 So:

(curl~F ) · k̂ =

(
∂Q
∂x
− ∂P

∂y

)
k̂ · k̂ =

∂Q
∂x
− ∂P

∂y

2 We can rewrite the Green’s Theorem in vector form:
3 ∮

C

~F · d~r =

∫∫
D
(curl~F ) · k̂dA
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Second Vector Form of Green’s Theorem

1 ∮
C

~F · ~nds =

∫∫
D

div~F (x , y)dA
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Parametric Surfaces and their Areas - 16.6
1 Understand the role of gridlines in studying these surfaces.
2 Understand how the form or symmetry of a surface helps

one in choosing the parameterizations.
3 Determine the parametric representation of a surface.
4 Determine the tangent plane to a parametric surface.
5 Understand the role of the area element |ru × rv | for a

general parametric surface r(u, v).
6 Determine the area of a parametric surface.
7 HOMEWORK PROBLEMS: 3, 9, 19

MAJ Bowman Parametric Surfaces and their Areas



Admin
Block IV - Chapter 16

Last Class
Parametric Surfaces and their Areas

Look Forward
Questions

Course Guide
Definitions and Derivations
Homework Help

Outline

1 Admin

2 Last Class

3 Parametric Surfaces and their Areas
Course Guide
Definitions and Derivations
Homework Help

4 Look Forward

MAJ Bowman Parametric Surfaces and their Areas



Admin
Block IV - Chapter 16

Last Class
Parametric Surfaces and their Areas

Look Forward
Questions

Course Guide
Definitions and Derivations
Homework Help

1 Theorem 1 - Page 1070
2 Theorem 2 - Page 1070
3 Theorem 4 - Tangent Planes - Page 1074
4 Theorem 5 - Page 1074
5 Theorem 6 - WOW! - Try to say this three times fast! -

Surface Area? - Page 1076
6 Theorem 7 through 9 - Page 1077 - Surface area of a

graph.
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Board Work

1 Studnet Examples
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Surface Integrals - 16.7
1 Develop an understanding of the surface integral of a

scalar functions viewed as and extension of the surface
area integral.

2 Develop an understanding of oriented surfaces and
positive orientation.

3 Determine the surface integral over a surface.
4 Develop an understanding of flux (surface integrals of

vector fields).
5 Use surface integrals to determine the electric flux, net

charge, and heat flow across a solid region.
6 HOMEWORK PROBLEMS: 2, 10, 25
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