
MA153 Lesson 51

The Big Thought of the Day…

“Sequences & Series.”
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Admin Notes
• Project 2.

• Block V Schedule.

• WPR IV Stats…
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WPR IV Stats

Question Avg %

1a 95%

1b 85%

2 75%

3a 89%

3b 90%

3c 86%

3d 65%

4a 91%

4b 84%

5a 95%

5b 95%

6 66%

Points Percent

Highest 300 100%

Average 255 85%
Lowest 0 0%

Stand Dev 11.7
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Sequences
Legend has it that in Benares, an ancient city in 
India, there was a temple with a dome which 
marked the center of the world.  At the beginning 
of time, God placed 64 gold disks on one needle.  
Within the dome, priests moved golden disks between two diamond needle-
points (original and destination locations).  It was said that when they 
completed their task, the universe would come to an end!  

The disks are fragile; only one can be carried at a time.  A disk may not be 
placed on top of a smaller, less valuable disk.  And, there is only one other 
location in the temple (besides the original and destination locations) sacred 
enough that a pile of disks can be placed.

1.)  Suppose there was only one disk, how many       
moves would it take?

2.)  How about two?  Three, Four, Five?

3.)  Suppose it took one second to move a single disk.    
How long would it take to move all 64?

http://www.mazeworks.com/hanoi/index.htm

http://www.mazeworks.com/hanoi/index.htm�
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“Iteration Equation” or
“Recursion Equation”

“Initial Value” or 
“Initial Condition”

• Notice the above “Iteration Equation” moves in “discrete” steps… 
number of moves are “integer” values!

• We must “iterate” to find a solution related to a specific discrete 
step… thus “Iteration Equation”… Present=Past+Change

• We can define the “sequence” formed by the above “Iteration 
Equation” as…

{ } { }1 2 3 64, , ,..., 1,3,7,...,18446744073709551615M M M M =

Sequences
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A “sequence” is a list of numbers.  The order in which 
the numbers are listed is important, so for instance {1, 2, 
3, 4, 5, ...} is one sequence, and {2, 1, 4, 3, 6, 5, ...} is an 
entirely different sequence!  

A “series” is a sum of numbers.  For example, {1 + 1/2 
+ 1/4 + 1/8 + 1/16 + ...} is an example of a series. A series 
is composed of a sequence of terms that are added up. 
The order in which the terms appear is sometimes 
important. 

Sequence vs. Series…

Sequences
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… is a sequence such that the differences between 
successive terms is a constant.

A arithmetic sequence…

Famous Sequences
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Famous Sequences

… is a sequence such that each term is given by a 
multiple of the previous one.  If the multiplier is r, 
then the kth term is given by the recursion equation,

A geometric sequence…
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Recall “Towers of Hanoi”…
Famous Sequences

“difference equation”

{ } { }370955161518446744077310643210 ,...,,,,M,...,M,M,M,M =“sequence”

3
334

2
223

1
112

0
001

281

241

221

211

==+=−

==+=−

==+=−

==+=−

MMM
MMM
MMM
MMM

How are they related?
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Famous Sequences

… is a sequence of numbers defined by the recursion 
equation…

A fibonacci sequence…

{ },...,,,,,,,sequence
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A scrambled version 13, 3, 2, 21, 1, 1, 8, 5 of the first eight Fibonacci numbers appear as one of the 
clues left by murdered museum curator Jacque Saunière in D. Brown's novel The Da Vinci Code. 

http://www.amazon.com/exec/obidos/ASIN/1400079179/ref=nosim/weisstein-20�
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A sequence {an} has the limit L, and we write 

if we can make the terms an as close to L as we like, by 
taking n sufficiently large.

– If            exists, the sequence converges (or is 
convergent). 

– Otherwise, it diverges (or is divergent).

lim or asn nn
a L a L n

→∞
= → →∞

lim nn
a

→∞

Sequences
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Example 1…

Determine whether the sequence an is convergent 
or divergent… if convergent find the limit.

Example 2…

Determine whether the sequence an is convergent 
or divergent… if convergent find the limit.

3

1n
na

n
=

+

2tan
1 8n

na
n
π =  + 
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A sequence {an} is bounded…

– Below, if there is a number m such that m ≤ an

for all n ≥ 1…  i.e. an = n.

– Above, if there is a number M such that an ≤ M
for all n ≥ 1… i.e. an = n/(n+1). 

– But, not every bounded sequence is convergent… 
i.e. an = (–1)n.

Sequences
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A sequence {an} is called… 

– Increasing, if an < an+1 for all n ≥ 1, 
that is, a1 < a2 < a3 < · · ·

– Decreasing, if an > an+1 for all n ≥ 1

– Monotonic, if it is either increasing or decreasing.

– If a sequence is both bounded
& monotonic, then it must be 
convergent.

Sequences
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Example 3…

Determine whether the sequence an is increasing, 
decreasing, or not monotonic… is the sequence 
bounded?

Example 4…

Determine whether the sequence an is increasing, 
decreasing, or not monotonic… is the sequence 
bounded?

( 1)n
na n= −

2 1n
na

n
=

+
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A “sequence” is a list of numbers.  The order in which 
the numbers are listed is important, so for instance {1, 2, 
3, 4, 5, ...} is one sequence, and {2, 1, 4, 3, 6, 5, ...} is an 
entirely different sequence! 

A “series” is a sum of numbers.  For example, {1 + 1/2 
+ 1/4 + 1/8 + 1/16 + ...} is an example of a series. A series 
is composed of a sequence of terms that are added up. 
The order in which the terms appear is sometimes 
important. 

Sequence vs. Series…

Series & Sequences
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Series
Consider the partial sums…

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

s4 = a1 + a2 + a3 + a4

– In general,

– We write the infinite series as…

1 2 3
1

n

n n i
i

s a a a a a
=

⋅⋅ + =⋅= + + + ∑

1 2 3
1n

na a a a
∞

=

= + + + ⋅⋅⋅∑
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If the sequence {sn} is convergent and 

exists as a real number, then the series Σan is called 
convergent and we write…

– The number s is called the sum of the series.

– Otherwise, the series is called divergent.

1 2
1

orn n
n

a a a s a s
∞

=

+ + ⋅⋅⋅ + + ⋅⋅⋅ = =∑

lim nn
s s

→∞
=

Series
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An important example of an infinite series is the 
geometric series…

1 2 3 1

1
 

,    0
1

n n

n
ar a ar ar ar ar

a a
r

∞
− −

=

= + + + + ⋅⋅⋅+ + ⋅⋅⋅

= ≠
−

∑

- The geometric series is convergent if |r | < 1.

- The geometric series is divergent if |r | ≥ 1.

Geometric Series
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Example 5…
Consider the geometric series below… is it convergent?  
If so, for what value s does the series converge?

1

1  
2n

n

∞

=
∑

Geometric Series
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1

1 3  
2

n

n
n

∞

=
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Example 6…
How about the new geometric series below… is it 
convergent?  If so, for what value s does the series 
converge?

Geometric Series
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Harmonic Series

1

1 1 1 11
2 3 4n n

∞

=

= + + + + ⋅⋅⋅∑

Another important infinite series is the harmonic series…

( )
( ) ( )

1 1 1 1 1 1 1
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If Σan is convergent, then…

– The limit of the sequence {sn} is s,               .

– The limit of the sequence {an} is 0,                .

Series Convergence/Divergence

If              does not exist or if                   , 

then the series           is divergent.

lim nn
a

→∞
lim 0nn

a
→∞

≠

1
n

n
a

∞

=
∑

Divergence Test…

1
n

n
a s

∞

=
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Example 7…
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