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1 This Week - Power Series Taylor Series and Reviews

2 Next Week - TEE
3 Homework 9 - Through Section 11.6

Due Today 8 December
4 Homework 9 - Section 11.8 - 11.10 and Calc Labs

Due Thursday 11 December
5 WPR IV Re-Submit Homework

Due Tomorrow 9 December, but can be turned in early
6 Lowest WPR grade has been dropped, check your grade

for correctness!
7 Guess what today is!
8 Chocolate Brownie Day!
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1 End of Course Survey on CIS by 8 December.

2 TEE INFO
1 Time: 0735-1105, Tuesday, 16 December
2 Location: Bartlett Hall - Not Thayer!

1 B3 - BH304
2 C3 - BH305
3 D3 - BH306

3 No Computer or Calculator
4 5 - 8.5x11 sheets of handwritten notes
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1 Sequences - 11.1:

2 Series - 11.2:
3 Comparison Tests - 11.4:
4 Alternating Series - 11.5:
5 Absolute Convergence and the Ratio and Root Tests -

11.6:
6 Power Series - 11.8:
7 Representations of Functions of Power Series - 11.9:
8 Taylor / Maclaurin Series - 11.10
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Sequence Notation and Limits

1 The sequence {a1, a2, a3, ...} is also denoted by:

{an} or {an}∞n=1

2 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by
taking n sufficiently large. If lim

n→∞
an exits, we say the

sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Sequence Notation and Limits

1 The sequence {a1, a2, a3, ...} is also denoted by:

{an} or {an}∞n=1

2 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by
taking n sufficiently large. If lim

n→∞
an exits, we say the

sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Sequence Notation and Limits

1 The sequence {a1, a2, a3, ...} is also denoted by:

{an} or {an}∞n=1

2 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by
taking n sufficiently large. If lim

n→∞
an exits, we say the

sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Sequence Notation and Limits

1 The sequence {a1, a2, a3, ...} is also denoted by:

{an} or {an}∞n=1

2 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by
taking n sufficiently large. If lim

n→∞
an exits, we say the

sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Sequence Notation and Limits

1 The sequence {a1, a2, a3, ...} is also denoted by:

{an} or {an}∞n=1

2 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by
taking n sufficiently large. If lim

n→∞
an exits, we say the

sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Limits of Sequenced using epsilon

1 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if for every ε > 0 there is a corresponding integer N such
that

if n > N then |an − L| < ε
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Definitions

1 If lim
x→∞

f (x) = L and f (n) = an when n is and integer,
then lim

n→∞
an = L.

2 lim
n→∞

an =∞ means that for every positive number M there
is an integer N such that

if n > N then an > M

3 Review the Limit Laws for Sequences on page 678.

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Definitions

1 If lim
x→∞

f (x) = L and f (n) = an when n is and integer,
then lim

n→∞
an = L.

2 lim
n→∞

an =∞ means that for every positive number M there
is an integer N such that

if n > N then an > M

3 Review the Limit Laws for Sequences on page 678.

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Definitions

1 If lim
x→∞

f (x) = L and f (n) = an when n is and integer,
then lim

n→∞
an = L.

2 lim
n→∞

an =∞ means that for every positive number M there
is an integer N such that

if n > N then an > M

3 Review the Limit Laws for Sequences on page 678.

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Squeeze Theorem

1 If an ≤ bn ≤ cn for n ≥ n0 and lim
n→∞

an = lim
n→∞

cn = L,
then lim

n→∞
bn = L.
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Functions of sequences

1 If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

2 If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f (an) = f (L)
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Convergence of Sequences

1 The sequence {rn} is convergent if −1 < r ≤ 1 and
divergent for all other values of r .

2 lim
n→∞

rn =

{
0 if − 1 < r < 1
1 if r = 1
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Increasing, Decreasing, and Monotonic

1 A sequence {an} is called increasing if an < an+1 for all
n ≥ 1, that is, a1 < a2 < a3 < .... It is called decreasing if
an > an+1 for all n ≥ 1.
It is called monotonic if it is either increasing or
decreasing.
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Bounded Sequences

1 A sequence {an} is bounded above if there is a number
M such that

an ≤ M for all n ≥ 1

It is bounded below if there is a number m such that

m ≤ an for all n ≥ 1

If it is bounded above and below, then
{an} is a bounded sequence.

2 Monotonic Sequence Theorem: Every bounded,
monotonic sequence is convergent.
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Notation

1 If we want to add the terms of an infinite sequence {an}∞n=1
we get an expression of the form

a1 + a2 + a3 + ... + an + ...

2 which is called an infinite series (or just a series) and is
denoted, for short by the symbol

∞∑
n=1

an or
∑

an

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Notation

1 If we want to add the terms of an infinite sequence {an}∞n=1
we get an expression of the form

a1 + a2 + a3 + ... + an + ...

2 which is called an infinite series (or just a series) and is
denoted, for short by the symbol

∞∑
n=1

an or
∑

an

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Notation

1 If we want to add the terms of an infinite sequence {an}∞n=1
we get an expression of the form

a1 + a2 + a3 + ... + an + ...

2 which is called an infinite series (or just a series) and is
denoted, for short by the symbol

∞∑
n=1

an or
∑

an

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

Limits and Convergence

1 Given a series
∞∑

n=1
an = a1 + a2 + a3 + ..., let sn denote its nth partial sum:

sn =
n∑

i=1

ai = a1 + a2 + a3 + ... + an

If the sequence {sn} is convergent and limn→∞ sn = s exists as a real
number, then the series

∑
an is called convergent and we write

a1 + a2 + a3 + ... + an + ... = s or
∞∑

n=1

an = s

The number s is called the sum of the series. Otherwise, the series is called
divergent.
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The number s is called the sum of the series. Otherwise, the series is called
divergent.
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The geometric series

The geometric series

∞∑
n=1

arn−1 = a + ar + ar2 + ...

is convergent if |r | < 1 and its sum is

∞∑
n=1

arn−1 =
a

1− r
|r | < 1

If |r | ≥ 1, the geometric series is divergent.
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The p series

The p-series
∞∑

n=1

1
np is convergent if p > 1 and divergent if

p ≤ 1.
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The Test for Divergence

1 If the series
∞∑

n=1
an is convergent, then lim

n→∞
an = 0

2 The Test for Divergence: If lim
n→∞

an does not exist or if

lim
n→∞

an 6= 0, then the series
∞∑

n=1
an is divergent.
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The Comparison Test

1 The Comparison Test Suppose that
∑

an and
∑

bn are
series with positive terms.

If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also
convergent.
If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is also
divergent.
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The Limit Comparison Test

1 The Limit Comparison Test Suppose that
∑

an and
∑

bn
are series with positive terms. If

lim
n→∞

an

bn
= c

where c is a finite number and c > 0, then either both
series converge or both diverge.
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Alternating Series

1 The Alternating Series Test If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + ... bn > 0

satisfies
bn+1 ≤ bn for all n

lim
n→∞

bn = 0

then the series is convergent
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Absolute Convergence

1 A series
∑

an is called absolutely convergent if the
series of absolute values

∑
|an| is convergent.

2 A series
∑

an is called conditionally convergent if it is
convergent but not absolutely.

3 If a series
∑

an is absolutely convergent, then it is
convergent.
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The Ratio Test

1 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑

n=1
an is absolutely

convergent (and therefore convergent).

2 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1, then the series
∞∑

n=1
an is divergent.

3 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, then the Ratio Test is inconclusive.
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The Root Test

1 If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely

convergent (and therefore convergent).

2 If lim
n→∞

n
√
|an| = L > 1, then the series

∞∑
n=1

an is divergent.

3 If lim
n→∞

n
√
|an| = 1, then the Root Test is inconclusive.

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

The Root Test

1 If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely

convergent (and therefore convergent).

2 If lim
n→∞

n
√
|an| = L > 1, then the series

∞∑
n=1

an is divergent.

3 If lim
n→∞

n
√
|an| = 1, then the Root Test is inconclusive.

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Sequences
Series
The Comparison Tests
Alternating Series
Absolute Convergence
The Ratio Test
The Root Test

The Root Test

1 If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely

convergent (and therefore convergent).

2 If lim
n→∞

n
√
|an| = L > 1, then the series

∞∑
n=1

an is divergent.

3 If lim
n→∞

n
√
|an| = 1, then the Root Test is inconclusive.

MAJ Bowman Power Series



Admin
Block V - Chapter 16

Last Class
Power Series
Look Forward

Questions

Course Guide
Definitions and Notation
Board Work

Course Guide

Power Series - 11.8
1 Understand the definition of a power series.
2 Understand the importance of the Ratio Test in determining

the radius and interval of convergence of a power series.
3 HOMEWORK PROBLEMS: 3, 10, 13
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Definitions

1 A power series is a series of the form:

2
∞∑

n=0

cnxn = c0 + c1x + c2x2 + c3x3 + ...

3 If cn = 1 for all n the power series becomes the geometric
series

∞∑
n=0

xn = 1 + x + x2 + x3 + ... + xn + ...

This series converges when −1 < x < 1 and diverges
when |x | ≥ 1
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General form of Power Series

1 The general form of the power series can be given as:

2
∞∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + ...

3 is called a power series in (x - a) or a power series
centered at a or a power series about a
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Theorem of Power Series

1 For a given poser series
∞∑

n=0
cn(x − a)n, there are only

three possibilities:

1 The series converges only when x = a.
2 The series conversions for all x .
3 There is a positive number R such that the series

converges if |x − a| < R and diverges if |x − a| > R.
4 The number R in case (iii) is called the radius of

convergence of the power series. The radius of
convergence R = 0 in case (i) and R =∞ in case (ii).

5 The interval of convergence of a power series is the
interval that consists of all values of x for which converges.
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Board Work

Find the radius of convergence and interval of convergence of
the following series:

1

∞∑
n=1

(−1)n−1xn

n3

2

∞∑
n=0

xn

n!

3

∞∑
n=1

(−1)n n2xn

2n
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Representations of Functions as Power Series - 11.9
1 Determine a power series representation of a function.
2 Differentiate and integrate a given power series to obtain a

new power series with the same radius of convergence.
3 Modify given power series to represent different functions.
4 HOMEWORK PROBLEMS: 3, 13, 20
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