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Sequence Notation and Limits

1 The sequence {a1, a2, a3, ...} is also denoted by:

{an} or {an}∞n=1

2 A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by
taking n sufficiently large. If lim

n→∞
an exits, we say the

sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).
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1 A sequence {an} has the limit L and we write
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an = L or an → L as n→∞

if for every ε > 0 there is a corresponding integer N such
that
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Definitions

1 If lim
x→∞

f (x) = L and f (n) = an when n is and integer,
then lim

n→∞
an = L.

2 lim
n→∞

an =∞ means that for every positive number M there
is an integer N such that

if n > N then an > M

3 Review the Limit Laws for Sequences on page 678.
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Squeeze Theorem

1 If an ≤ bn ≤ cn for n ≥ n0 and lim
n→∞

an = lim
n→∞

cn = L,
then lim

n→∞
bn = L.
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Functions of sequences

1 If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

2 If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f (an) = f (L)
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Convergence of Sequences

1 The sequence {rn} is convergent if −1 < r ≤ 1 and
divergent for all other values of r .

2 lim
n→∞

rn =

{
0 if − 1 < r < 1
1 if r = 1
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Increasing, Decreasing, and Monotonic

1 A sequence {an} is called increasing if an < an+1 for all
n ≥ 1, that is, a1 < a2 < a3 < .... It is called decreasing if
an > an+1 for all n ≥ 1.
It is called monotonic if it is either increasing or
decreasing.
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Bounded Sequences

1 A sequence {an} is bounded above if there is a number
M such that

an ≤ M for all n ≥ 1

It is bounded below if there is a number m such that

m ≤ an for all n ≥ 1

If it is bounded above and below, then
{an} is a bounded sequence.

2 Monotonic Sequence Theorem: Every bounded,
monotonic sequence is convergent.
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Notation of Series

1 If we want to add the terms of an infinite sequence {an}∞n=1
we get an expression of the form

a1 + a2 + a3 + ... + an + ...

2 which is called an infinite series (or just a series) and is
denoted, for short by the symbol

∞∑
n=1

an or
∑

an
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Limits and Convergence

1 Given a series
∞∑

n=1
an = a1 + a2 + a3 + ..., let sn denote its nth partial sum:

sn =
n∑

i=1

ai = a1 + a2 + a3 + ... + an

If the sequence {sn} is convergent and limn→∞ sn = s exists as a real
number, then the series

∑
an is called convergent and we write

a1 + a2 + a3 + ... + an + ... = s or
∞∑

n=1

an = s

The number s is called the sum of the series. Otherwise, the series is called
divergent.
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The geometric series

The geometric series

∞∑
n=1

arn−1 = a + ar + ar2 + ...

is convergent if |r | < 1 and its sum is

∞∑
n=1

arn−1 =
a

1− r
|r | < 1

If |r | ≥ 1, the geometric series is divergent.
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The p series

The p-series
∞∑

n=1

1
np is convergent if p > 1 and divergent if

p ≤ 1.
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The Test for Divergence

1 If the series
∞∑

n=1
an is convergent, then lim

n→∞
an = 0

2 The Test for Divergence: If lim
n→∞

an does not exist or if

lim
n→∞

an 6= 0, then the series
∞∑

n=1
an is divergent.
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The Comparison Test

1 The Comparison Test Suppose that
∑

an and
∑

bn are
series with positive terms.

If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also
convergent.
If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is also
divergent.
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The Limit Comparison Test

1 The Limit Comparison Test Suppose that
∑

an and
∑

bn
are series with positive terms. If

lim
n→∞

an

bn
= c

where c is a finite number and c > 0, then either both
series converge or both diverge.
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Alternating Series

1 The Alternating Series Test If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + ... bn > 0

satisfies
bn+1 ≤ bn for all n

lim
n→∞

bn = 0

then the series is convergent
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Absolute Convergence

1 A series
∑

an is called absolutely convergent if the
series of absolute values

∑
|an| is convergent.

2 A series
∑

an is called conditionally convergent if it is
convergent but not absolutely.

3 If a series
∑

an is absolutely convergent, then it is
convergent.
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The Ratio Test

1 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑

n=1
an is absolutely

convergent (and therefore convergent).

2 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1, then the series
∞∑

n=1
an is divergent.

3 If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, then the Ratio Test is inconclusive.
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The Root Test

1 If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely

convergent (and therefore convergent).
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n
√
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∞∑
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Power Series

1 A power series is a series of the form:

2
∞∑

n=0

cnxn = c0 + c1x + c2x2 + c3x3 + ...

3 If cn = 1 for all n the power series becomes the geometric
series

∞∑
n=0

xn = 1 + x + x2 + x3 + ... + xn + ...

This series converges when −1 < x < 1 and diverges
when |x | ≥ 1
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General form of Power Series

1 The general form of the power series can be given as:

2
∞∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + ...

3 is called a power series in (x - a) or a power series
centered at a or a power series about a
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Theorem of Power Series

1 For a given poser series
∞∑

n=0
cn(x − a)n, there are only

three possibilities:

1 The series converges only when x = a.
2 The series conversions for all x .
3 There is a positive number R such that the series

converges if |x − a| < R and diverges if |x − a| > R.
4 The number R in case (iii) is called the radius of

convergence of the power series. The radius of
convergence R = 0 in case (i) and R =∞ in case (ii).

5 The interval of convergence of a power series is the
interval that consists of all values of x for which converges.
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Course Guide

Representations of Functions as Power Series - 11.9
1 Determine a power series representation of a function.
2 Differentiate and integrate a given power series to obtain a

new power series with the same radius of convergence.
3 Modify given power series to represent different functions.
4 HOMEWORK PROBLEMS: 3, 13, 20
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Definitions

1 We start by revisiting a special geometric series from Stewart 11.2, Example 5,
Page 690.

2 Find the sum of the series
∞∑

n=0

xn, where |x | < 1.

3 Notice this series starts with n = 0 ans so the first term is x0 = 1.
4 With series we adopt the convention that x0 = 1 even when x = 0. So the resulting

sum is:
5

∞∑
n=0

xn = 1 + x + x2 + x3 + x4 + ...

6 This is a geometric series with a = 1 and r = x . Since |r | = |x | < 1, it converges
and gives us

7
∞∑

n=0

xn =
1

1− x
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6 This is a geometric series with a = 1 and r = x . Since |r | = |x | < 1, it converges
and gives us

7
∞∑

n=0

xn =
1

1− x
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Definitions

1 Now that we have
∞∑

n=0

xn =
1

1− x

2 We change our point of view and regard the above

equation as expressing the function f (x) =
1

(1− x)
as a

sum of a power series.
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Book Example

1 We want to convert
1

1 + x2 to a sum of a power series and find the interval of
convergence.

2 We replace the x in our special equation with −x2 which gives us:
3

1
1 + x2 =

1
1− (−x2)

=
∞∑

n=0

(−x2)n

4

=
∞∑

n=0

(−1)nx2n = 1− x2 + x4 − x6 + x8 − ...

5 This is a geometric series, it converges when | − x2| < 1, which means, x2 < 1,
or |x | < 1. So the interval of convergence is (−1, 1).
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Term by Term differentiation and integration
If the power series

∑
cn(x − a)n has a radius of convergence R > 0. Then the

function f defined by:

f (x) = c0 + c1(x − a) + c2(x − a)2 + ... =
∞∑

n=0

cn(x − a)n

which is differentiable on the interval (a− R, a + R) and:

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + ... =
∞∑

n=1

ncn(x − a)n−1

∫
f (x)dx = C + c0(x − a) + c1

(x − a)2

2
+ c2

(x − a)3

3
+ ...

= C +
∞∑

n=0

cn
(x − a)n+1

n + 1
The radii of convergence of the power series in the above equations is R.
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Taylor and Maclaurin Series - 11.10
1 Understand the definition of a Taylor Series.
2 Know the Maclaurin series for; sin x , cos x , ex .
3 HOMEWORK PROBLEMS: 5, 13, 30, 56
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