MA153 Lesson 56

LESSON 56 - Taylor Series

11 December, 2008
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Birthday Cadet

Who'’s Birthday is I1t?
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Admin

Birthday Cadet

Who'’s Birthday is I1t?
@ This cadet is from a city in Texas
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Birthday Cadet

Who'’s Birthday is I1t?

=
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Admin

Birthday Cadet

Who'’s Birthday is I1t?

© Yes its Houston, Texas.
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Admin

Birthday Cadet
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Admin

Birthday Cadet

© This cadet is part of the reconditioning team and the Staff
and Ushers program.
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Birthday Cadet

A
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Birthday Cadet

o

© David Durr turns 20, Tomorrow 12 December!
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Birthday Cadet

Who’s Birthday is It?
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Birthday Cadet

Who's Birthday is I1t?
@ This cadet is from a city in Pennsylvania.
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Birthday Cadet

Who’s Birthday is It?
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Birthday Cadet

Who's Birthday is I1t?

© VYes its Benton, Pennsylvania.
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Birthday Cadet
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Birthday Cadet

@ This cadet is part of the Band (Spirit Support Group).

MAJ Bowman Taylor Series



Admin

Birthday Cadet

o
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Birthday Cadet

o

© Paul Anderson turns 18, on 18 December!

MAJ Bowman Taylor Series



Admin

Birthday Cadet

Who’s Birthday is It?
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Birthday Cadet

Who's Birthday is I1t?
@ This cadet is from a city in New York.
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Birthday Cadet

Who’s Birthday is It?
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Birthday Cadet

Who's Birthday is I1t?

© Yes its Fairport, New York.
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Birthday Cadet
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Birthday Cadet

@ This cadet is part of the Soccer Team.
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Birthday Cadet

. dh
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Birthday Cadet

o
© Teddy Taggart turns 19, on 19 December!
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Birthday Cadet

Who’s Birthday is It?
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Birthday Cadet

Who's Birthday is I1t?
@ This cadet is from a city in New Hampshire.
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Birthday Cadet

Who’s Birthday is It?

MAJ Bowman Taylor Series



Admin

Birthday Cadet

Who's Birthday is I1t?

© VYes its Bedford, New Hampshire.
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Birthday Cadet
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Birthday Cadet

© This cadet is part the paintball club, snow sport instructor
club, and the French Language club.
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Birthday Cadet

. 8
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Birthday Cadet

o

© Adam Fulling turns 19, on 22 December!
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@ This Week - Taylor Series and Reviews

n WPR Regrade: Make sure you can get the right answer
- | did not include solutions.
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Admin

@ This Week - Taylor Series and Reviews
© Next Week - TEE

n WPR Regrade: Make sure you can get the right answer
- | did not include solutions.
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Admin

@ This Week - Taylor Series and Reviews
© Next Week - TEE

© Homework 9 - Section 11.8 - 11.10 and Calc Labs
Due Friday 12 December

n WPR Regrade: Make sure you can get the right answer
- | did not include solutions.
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© On WPR Regrade: Make sure you can get the right answer
- | did not include solutions.
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@ End of Course Survey on CIS due by 19 December.
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@ TEE INFO
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@ TEE INFO
@ Time: 0735-1105, Tuesday, 16 December
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@ TEE INFO

@ Time: 0735-1105, Tuesday, 16 December
@ Location: Bartlett Hall - Not Thayer!
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@ TEE INFO

@ Time: 0735-1105, Tuesday, 16 December
@ Location: Bartlett Hall - Not Thayer!

© B3-BH304

@ C3-BH322 - Change to previous

© D3 -BH306
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Admin

@ TEE INFO

@ Time: 0735-1105, Tuesday, 16 December
@ Location: Bartlett Hall - Not Thayer!

@ B3-BH304
@ C3-BH322 - Change to previous
© D3 -BH306

© No Computer or Calculator
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@ TEE INFO

@ Time: 0735-1105, Tuesday, 16 December
@ Location: Bartlett Hall - Not Thayer!
© B3-BH304
@ C3-BH322 - Change to previous
© D3 -BH306
© No Computer or Calculator
@ 5 - 8.5x11 sheets of handwritten notes
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Admin

@ TEE INFO

@ Time: 0735-1105, Tuesday, 16 December
@ Location: Bartlett Hall - Not Thayer!

@ B3-BH304
@ C3-BH322 - Change to previous
© D3 -BH306

© No Computer or Calculator
@ 5 - 8.5x11 sheets of handwritten notes

© Study Session Saturday Morning, 0830-1100, TH 342, LTC
Outing.
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:
© Series-11.2:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:
© Series-11.2:
© Comparison Tests - 11.4:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:

© Series-11.2:

© Comparison Tests - 11.4:
© Alternating Series - 11.5:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:

© Series-11.2:

© Comparison Tests - 11.4:
© Alternating Series - 11.5:

© Absolute Convergence and the Ratio and Root Tests -
11.6:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:

© Series-11.2:

© Comparison Tests - 11.4:
© Alternating Series - 11.5:

© Absolute Convergence and the Ratio and Root Tests -
11.6:

@ Power Series - 11.8:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:

© Series-11.2:

© Comparison Tests - 11.4:
© Alternating Series - 11.5:

© Absolute Convergence and the Ratio and Root Tests -
11.6:

© Power Series - 11.8:
@ Representations of Functions of Power Series - 11.9:
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Block V - Chapter 16

Block IV - Chapter 11

@ Sequences - 11.1:

© Series-11.2:

© Comparison Tests - 11.4:
© Alternating Series - 11.5:

© Absolute Convergence and the Ratio and Root Tests -
11.6:

© Power Series - 11.8:
@ Representations of Functions of Power Series - 11.9:
© Taylor / Maclaurin Series - 11.10
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Sequences and Series
Testing Series for convergence
Power Series

Last Classes

Representations of Functions as Power Series

9 Last Classes
@ Sequences and Series




Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Sequence Notation and Limits

@ The sequence {ay, a, as, ...} is also denoted by:
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Sequence Notation and Limits

@ The sequence {ay, a, as, ...} is also denoted by:

{an} or {an}ply
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Sequence Notation and Limits

@ The sequence {ay, a, as, ...} is also denoted by:

{an} or {an}ply

@ A sequence {a,} has the limit L and we write
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Sequence Notation and Limits

@ The sequence {ay, a, as, ...} is also denoted by:

{an} or {an}ply

@ A sequence {a,} has the limit L and we write

lima,=L or a,—Lasn— oo

n—oo
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Sequence Notation and Limits

@ The sequence {ay, a, as, ...} is also denoted by:

{an} or {an}ply

@ A sequence {a,} has the limit L and we write

lima,=L or a,—Lasn— oo

n—oo

if we can make the terms a, as close to L as we like by
taking n sufficiently large. If nlim an exits, we say the
sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits of Sequenced using epsilon

@ A sequence {ap} has the limit L and we write
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits of Sequenced using epsilon

@ A sequence {ap} has the limit L and we write

lima,=L or a,—Lasn—

n—oo
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits of Sequenced using epsilon

@ A sequence {ap} has the limit L and we write

lima,=L or a,—Lasn—

n—oo

if for every £ > 0 there is a corresponding integer N such
that
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits of Sequenced using epsilon

@ A sequence {ap} has the limit L and we write

lima,=L or a,—Lasn—

n—oo

if for every £ > 0 there is a corresponding integer N such
that

if n>N then |a,—L|<e
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Definitions

Q If Xlim f(x) = Land f(n) = a, when nis and integer,
then nlim an = L.




Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Definitions

Q If Xlim f(x) = Land f(n) = a, when nis and integer,
then nlim an = L.

Q nlim ap = oo means that for every positive number M there
— 00
is an integer N such that

if n>N then a,>M
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Definitions

Q If Xlim f(x) = Land f(n) = a, when nis and integer,
then nlim an = L.

Q nlim ap = oo means that for every positive number M there
— 00
is an integer N such that

if n>N then a,>M

© Review the Limit Laws for Sequences on page 678.

MAJ Bowman Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Squeeze Theorem

Q@ Ifa,<b,<cpforn>ngand lim a, = lim ¢, =L,
. n—oo n—oo
then lim b, = L.
n—oo




Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Functions of sequences

@ If lim |a;| =0, then Im a,=0
n—oo n—oo
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Functions of sequences

@ If lim |a;| =0, then Im a,=0
n—oo n—oo

QI nlim a, = L and the function f is continuous at L, then
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Functions of sequences

@ If lim |a;| =0, then Im a,=0
n—oo n—oo

QI nlim a, = L and the function f is continuous at L, then

lim f(an) = f(L)

n—oo
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Convergence of Sequences

@ The sequence {r"} is convergent if —1 < r <1 and
divergent for all other values of r.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Convergence of Sequences

@ The sequence {r"} is convergent if —1 < r <1 and
divergent for all other values of r.

. 0 if—1<r<1
n
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Sequences and Series
Last Classes
Testing Series for convergence
Power Series
Representations of Functions as Power Series

Increasing, Decreasing, and Monotonic

@ A sequence {a,} is called increasing if a, < an, ¢ for all

n>1,thatis, a; < a» < az < .... ltis called decreasing if
ap > apyq foralln>1.

It is called monotonic if it is either increasing or
decreasing.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Bounded Sequences

@ A sequence {an} is bounded above if there is a number
M such that

an <M foralln>1
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Bounded Sequences

@ A sequence {an} is bounded above if there is a number
M such that

an <M foralln>1

It is bounded below if there is a number m such that

m< ap foralln> 1
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Bounded Sequences

@ A sequence {an} is bounded above if there is a number
M such that

an <M foralln>1

It is bounded below if there is a number m such that
m< ap forall n > 1

If it is bounded above and below, then
{an} is a bounded sequence.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Bounded Sequences

@ A sequence {an} is bounded above if there is a number
M such that

an <M foralln>1
It is bounded below if there is a number m such that
m< ap foralln> 1

If it is bounded above and below, then
{an} is a bounded sequence.

© Monotonic Sequence Theorem: Every bounded,
monotonic sequence is convergent.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Notation of Series

@ If we want to add the terms of an infinite sequence {a,}°° ,
we get an expression of the form
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Notation of Series

@ If we want to add the terms of an infinite sequence {a,}°° ,
we get an expression of the form

ag+a+azy+..+an+ ..
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Notation of Series

@ If we want to add the terms of an infinite sequence {a,}°° ,
we get an expression of the form

ay+a+az+..+ap+ ...

@ which is called an infinite series (or just a series) and is
denoted, for short by the symbol

o0
Y ap or ) ap
n=1
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits and Convergence

o0
@ Given aseries > ap,=ay + a + as + ..., let s, denote its nth partial sum:
n=1




Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits and Convergence

o0
@ Given aseries > ap,=ay + a + as + ..., let s, denote its nth partial sum:
n=1

n
sn=Za,=a1+a2+a3+...+an
i=1
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits and Convergence

o0
@ Given aseries > ap,=ay + a + as + ..., let s, denote its nth partial sum:
n=1

n
sn=Za,=a1+a2+a3+...+an
i=1

If the sequence {s,} is convergent and lim,_... Sp = s exists as a real
number, then the series ) a, is called convergent and we write
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits and Convergence

o0
@ Given aseries > ap,=ay + a + as + ..., let s, denote its nth partial sum:
n=1

n
sn=2a,=a1 +a+az+..+an
i=1
If the sequence {s,} is convergent and lim,_... Sp = s exists as a real

number, then the series ) a, is called convergent and we write

oo
a+a+as+..+ta+..=Ss of » ap=s
n=1

MAJ Bo Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Limits and Convergence

o0
@ Given aseries > ap,=ay + a + as + ..., let s, denote its nth partial sum:
n=1

n
sn=Za,=a1+a2+a3+...+an
i=1

If the sequence {s,} is convergent and lim,_... Sp = s exists as a real
number, then the series ) a, is called convergent and we write

oo
a+a+as+..+ta+..=Ss of » ap=s
n=1

The number s is called the sum of the series. Otherwise, the series is called
divergent.




Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The geometric series

The geometric series

o0
Zar”‘1 —atar+ar®+ ..

n=1

is convergent if [r| < 1 and its sum is

- a
» ar" = T Irl<1
n=1 N

If |r] > 1, the geometric series is divergent.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The p series

The p-series Z o is convergent if p > 1 and divergent if
n= 1
p<T1.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Test for Divergence

o
@ If the series Y aj is convergent, then nIim an=20
n=1 oo
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Test for Divergence

o
@ If the series Y aj is convergent, then nIim an=20
n=1 oo

© The Test for Divergence: If nlim anp does not exist or if

nlim ap # 0, then the series _ a, is divergent.
0 n=1

MAJ Bowman Taylor Series



Sequences and Series
Testing Series for convergence
Power Series

Last Classes

Representations of Functions as Power Series

9 Last Classes

@ Testing Series for convergence




Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Comparison Test

@ The Comparison Test Suppose that }_ a, and >_ b, are
series with positive terms.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Comparison Test

@ The Comparison Test Suppose that }_ a, and >_ b, are
series with positive terms.

e If > byis convergent and a, < b, for all n, then >_ a, is also
convergent.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Comparison Test

@ The Comparison Test Suppose that }_ a, and >_ b, are
series with positive terms.
e If > byis convergent and a, < b, for all n, then >_ a, is also
convergent.

e If Y b, is divergent and a, > b, for all n, then > a, is also
divergent.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Limit Comparison Test

@ The Limit Comparison Test Suppose that > a, and > by,
are series with positive terms. If
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Limit Comparison Test

@ The Limit Comparison Test Suppose that > a, and > by,
are series with positive terms. If

MAJ Bowman Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Limit Comparison Test

@ The Limit Comparison Test Suppose that > a, and > by,
are series with positive terms. If

where c is a finite number and ¢ > 0, then either both
series converge or both diverge.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Alternating Series

@ The Alternating Series Test If the alternating series
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Alternating Series

@ The Alternating Series Test If the alternating series

o0

(_1)n_1bn:b1 _b2+b3—b4—|-b5—b6—|—... bp >0

n=1
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Alternating Series

@ The Alternating Series Test If the alternating series

(_1)n_1bn:b1 _b2+b3—b4—|-b5—b6—|—... bp >0
n=1
satisfies

MAJ Bowman Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Alternating Series

@ The Alternating Series Test If the alternating series

(_1)n_1bn:b1 _b2+b3—b4—|-b5—b6—|—... bp >0
n=1
satisfies

bpi1 < b, foralln
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Alternating Series

@ The Alternating Series Test If the alternating series

(_1)n_1bn:b1 _b2+b3—b4—|-b5—b6—|—... bp >0
n=1
satisfies

bpi1 < b, foralln

lim b, =0

n—oo
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Alternating Series

@ The Alternating Series Test If the alternating series

(_1)n_1bn:b1 _b2+b3—b4—|-b5—b6—|—... bp >0
n=1
satisfies

bpi1 < b, foralln

lim b, =0

n—oo

then the series is convergent
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Absolute Convergence

@ A series ) a, is called absolutely convergent if the
series of absolute values > |ap| is convergent.

@ A series ) a, is called conditionally convergent if it is
convergent but not absolutely.

© If aseries > a, is absolutely convergent, then it is
convergent.
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Ratio Test

an+1

o0
Q If lim = L < 1, then the series ) a, is absolutely
n—oo| an n=1

convergent (and therefore convergent).
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Ratio Test

an+1

o0
Q If lim = L < 1, then the series ) a, is absolutely
n—oo| an n=1

convergent (and therefore convergent).

Q If lim %!

n—oo

= L > 1, then the series )_ a, is divergent.
n=1

an
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Ratio Test

. |a =N
@ If lim || = [ < 1, then the series > anis absolutely
n—oo| an n=1

convergent (and therefore convergent).

QI Jim a;+1 = L > 1, then the series Y_ aj is divergent.
—oo n n=1

. a . . .
Q If lim hala Ll 1, then the Ratio Test is inconclusive.
n—oo an

MAJ Bowman Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Root Test

o0
Q If nlim V/|lan| = L < 1, then the series > a, is absolutely
—oo n=1
convergent (and therefore convergent).
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Root Test

o0
Q If nlim V/|lan| = L < 1, then the series > a, is absolutely
—oo n=1
convergent (and therefore convergent).

Q If nlim V/|an| = L > 1, then the series }_ a, is divergent.

n=1
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

The Root Test

o0
Q If nlim V/|lan| = L < 1, then the series > a, is absolutely
— 00

n=1
convergent (and therefore convergent).

Q If nlim V/|an| = L > 1, then the series }_ a, is divergent.

n=1

QIf nlim V/|an| = 1, then the Root Test is inconclusive.
—00
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Outline

9 Last Classes

@ Power Series
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Power Series

@ A power series is a series of the form:
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Power Series

@ A power series is a series of the form:

(2]

o0
> enx" = o + 01X + CoX® + Cax° ...
n=0
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Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Power Series

@ A power series is a series of the form:

(2]

o0
> enx" = o + 01X + CoX® + Cax° ...
n=0

© If ¢, = 1 for all nthe power series becomes the geometric
series

o0
Zx”:1+x+x2+x3+...+x”+...
n=0
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Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Power Series

@ A power series is a series of the form:

(2]

o0
> enx" = o + 01X + CoX® + Cax° ...
n=0

© If ¢, = 1 for all nthe power series becomes the geometric
series

o0
Zx”:1+x+x2+x3+...+x”+...
n=0

This series converges when —1 < x < 1 and diverges
when |x| > 1

MAJ Bowman Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

General form of Power Series

@ The general form of the power series can be given as:
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General form of Power Series

@ The general form of the power series can be given as:

2

o0

D ca(x—a)"=co+ci(x —a) + ca(x — a)® + ...

n=0
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General form of Power Series

@ The general form of the power series can be given as:

2

o0

D ca(x—a)"=co+ci(x —a) + ca(x — a)® + ...

n=0

© is called a power series in (x - @) or a power series
centered at a or a power series about a
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@ For a given power series >~ cn(x — a)", there are only
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@ For a given power series >~ cn(x — a)", there are only
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Theorem of Power Series

o0
@ For a given power series >~ cn(x — a)", there are only
n=0
three possibilities:

@ The series converges only when x = a.
@ The series conversions for all x.
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Representations of Functions as Power Series

Last Classes

Theorem of Power Series

o0
@ For a given power series >~ cn(x — a)", there are only
n=0
three possibilities:

@ The series converges only when x = a.

@ The series conversions for all x.

@ There is a positive number R such that the series

converges if | x — a| < R and diverges if |x — a| > R.
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Representations of Functions as Power Series
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Theorem of Power Series

o0
@ For a given power series >~ cn(x — a)", there are only
n=0
three possibilities:
@ The series converges only when x = a.
@ The series conversions for all x.
@ There is a positive number R such that the series
converges if | x — a| < R and diverges if |x — a| > R.
@ The number R in case (iii) is called the radius of
convergence of the power series. The radius of
convergence R = 0 in case (i) and R = oo in case (ii).
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Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Theorem of Power Series

o0
@ For a given power series >~ cn(x — a)", there are only
n=0
three possibilities:
@ The series converges only when x = a.
@ The series conversions for all x.
@ There is a positive number R such that the series
converges if | x — a| < R and diverges if |x — a| > R.
@ The number R in case (iii) is called the radius of
convergence of the power series. The radius of
convergence R = 0 in case (i) and R = oo in case (ii).
@ The interval of convergence of a power series is the
interval that consists of all values of x for which converges.
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Outline

9 Last Classes

@ Representations of Functions as Power Series
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@ We start by revisiting a special geometric series from Stewart 11.2, Example 5, Page 690.

Q Find the sum of the series > _ x", where |x| < 1.
n=0
© Notice this series starts with n = 0 ans so the first term is x° = 1.
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Derivation of functions of power series

@ We start by revisiting a special geometric series from Stewart 11.2, Example 5, Page 690.

Q Find the sum of the series > _ x", where |x| < 1.
n=0
© Notice this series starts with n = 0 ans so the first term is x° = 1.
@ With series we adopt the convention that x° = 1 even when x = 0. So the resulting sum is:

MAJ Bo Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Derivation of functions of power series

@ We start by revisiting a special geometric series from Stewart 11.2, Example 5, Page 690.

Q Find the sum of the series > _ x", where |x| < 1.
n=0
© Notice this series starts with n = 0 ans so the first term is x° = 1.
@ With series we adopt the convention that x° = 1 even when x = 0. So the resulting sum is:

o

o0
X"=14x+ X2+ x4+ x4+
n=0

MAJ Bo Taylor Series



Sequences and Series

Testing Series for convergence

Power Series

Representations of Functions as Power Series

Last Classes

Derivation of functions of power series

@ We start by revisiting a special geometric series from Stewart 11.2, Example 5, Page 690.

Q Find the sum of the series > _ x", where |x| < 1.
n=0
© Notice this series starts with n = 0 ans so the first term is x° = 1.
@ With series we adopt the convention that x° = 1 even when x = 0. So the resulting sum is:

(5]
-
Sx" =1 x+ x4+ x5+ xt+
n=0

© This is a geometric series with a= 1 and r = x. Since |r| = |x| < 1, it converges and gives us
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Derivation of functions of power series

@ We start by revisiting a special geometric series from Stewart 11.2, Example 5, Page 690.

Q Find the sum of the series > _ x", where |x| < 1.
n=0
© Notice this series starts with n = 0 ans so the first term is x° = 1.
@ With series we adopt the convention that x° = 1 even when x = 0. So the resulting sum is:

(5]
-
Sx" =1 x+ x4+ x5+ xt+
n=0

© This is a geometric series with a= 1 and r = x. Since |r| = |x| < 1, it converges and gives us

o
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Derivation of functions of power series

1
1—x

o0
@ Now that we have Zx” -
n=0
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Derivation of functions of power series

1
1—x

@ Now that we have » " x" =
n=0
@ We change our point of view and regard the above
equation as expressing the function f(x) = — as a

(1-x)

sum of a power series.
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Term by Term differentiation and integration

If the power series " cp(x — a)” has a radius of convergence R > 0. Then the function f
defined by:

f(x)=co+ci(x —a)+ ca(x — az)2 +..= ic,,(x —a)"
n=0

which is differentiable on the interval (a— R,a+ R) and:
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Term by Term differentiation and integration

If the power series " cp(x — a)” has a radius of convergence R > 0. Then the function f
defined by:

o0
f(x)=co+ci(x—a)+c(x—aP+..=Y ci(x—a)"
n=0
which is differentiable on the interval (a— R,a+ R) and:

@ f(x)=cy +2c(x —a)+3c3(x —a)? + .. = i nep(x — a)™!

n=1
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Term by Term differentiation and integration

If the power series " cp(x — a)” has a radius of convergence R > 0. Then the function f
defined by:

f(x) = co + C1(x — a) + co(x — a)? Zc,,(x a)”
which is differentiable on the interval (a— R,a+ R) and:

@ f(x)=cy +2c(x —a)+3c3(x —a)? + .. = i nep(x — a)™!

n=1
. e T
° /fxdx:C+CU(X_a)+C1(X 23) +02(X 33) + ..
_ (X an+1
C+Zc,, P
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Power Series

Representations of Functions as Power Series

Last Classes

Term by Term differentiation and integration

If the power series " cp(x — a)” has a radius of convergence R > 0. Then the function f
defined by:

f(x) = co + C1(x — a) + co(x — a)? Zc,,(x a)”
which is differentiable on the interval (a— R,a+ R) and:

@ f(x)=cy +2c(x —a)+3c3(x —a)? + .. = i nep(x — a)™!

n=1
. e T
° /fxdx:C+CU(X_a)+C1(X 23) +02(X 33) + ..
_ (X an+1
C+Zc,, P

@ The radu of convergence of the power series in the above equations is R.
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Taylor Series Definitions and Notation

Course Guide

Taylor and Maclaurin Series - 11.10
@ Understand the definition of a Taylor Series.
@ Know the Maclaurin series for; sin x, cos x, e~.
© HOMEWORK PROBLEMS: 5, 13, 30, 56
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Definitions

@ We start by supposing that f is any function that can be
represented by a power series:
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Definitions

@ We start by supposing that f is any function that can be
represented by a power series:

(2]

f(x) = co+cr(x—a)+ca(x—a)*+ea(x—a)’+... |x—a <R
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Taylor Series Definitions and Notation

Definitions

@ We start by supposing that f is any function that can be
represented by a power series:

(2]

f(x) = co+cr(x—a)+ca(x—a)*+ea(x—a)’+... |x—a <R

© Through a series of taking derivatives when x = a we get
the following:
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Definitions

@ If f has a power series expansion at a where:
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Definitions

@ If f has a power series expansion at a where:

e oo
f(x)=> cax—a)" [x—a <R
n=0
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Definitions

@ If f has a power series expansion at a where:

e oo
f(x)=> cax—a)" [x—a <R
n=0

© Then its coefficients are given by:
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Taylor Series Definitions and Notation

Definitions

@ If f has a power series expansion at a where:

e oo
f(x)=> cax—a)" [x—a <R
n=0

© Then its coefficients are given by:

° ARIE)

"l
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Definitions

@ Now put our ¢, back in our original equation and get:
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Definitions

@ Now put our ¢, back in our original equation and get:

2]

°_ f(n)
00 =3 18— ay

n=0
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Taylor Series Definitions and Notation

Definitions

@ Now put our ¢, back in our original equation and get:

© > £(n)
) =Y nfa) (x — a)"
n=0 '
o
— f(a) + f/1(!a) (x—a)+ fﬂz(f) (x— a3+ f/;(!a) (x—a)P+ ..
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Taylor Series Definitions and Notation

Special Taylor Series

o n
X
X __
et = E o for all x
n=0

Q If we put x = 1 we get:
o

<1 1 1 1
e:ZH:1+T TR TR
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Y Definitions and Notation

Special Taylor Series

. x> x> X/
SinNX =x— = + =

3 TE Tt
0 N X2n+1
= 1) for all x
;)( ) (2n+1)!
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Special Taylor Series

p x2 x* x5
Cosx=1- 55+ 75 — 5+
0 2n
= Z(—1)”()2( I for all x
n=0
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Homework Help

homework help
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Block V - Review

Know How to do the following

@ Test a sequence for convergence
@ Test a series for convergence

© Find the radius and interval of convergence for a power
series

© Find terms of a Taylor Series
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Look Forward

Look Forward

Block | - IV Review
@ Block | - Vectors and Geometry of Space
@ Block Il - Multi Variable Functions and Partial Derivatives.
© Block Ill - Multiple Integrals
© Block IV - Vector Calculus
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Questions?

Questions?
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