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Three Dimensional Coordinate System

1 Distance Formula in Three Dimensions: The distance |P1P2|
between the points P1(x1, y1, z1) and P2(x2, y2, z2) is

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

2 Equation of a Sphere: An equation of a sphere with center
C(h, k , l) and radius r is

(x − h)2 + (y − k)2 + (z − l)2 = r2

If the center is the origin O, then the equation is

x2 + y2 + z2 = r2
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Vectors

1 A vector has both magnitude and direction.
2 A vector is often represented by an arrow or a directed line

segment. The length of the arrow represents the magnitude and
the arrow points in the direction of the vector.

3 A vector is represented by a bold (v) or an arrow above it (~v).
4 Suppose a particle or ball moves along a line segment from point

A to point B. The displacement vector v, has initial point A (the
tail) and terminal point B (the tip) and we write this as v = AB.

5 Another vector u = CD could have the same length and direction
as v but be in a different position. In this case u and v are
equivalent (or equal) and we can write u = v.

6 The zero vector, denoted by 0, has length 0. It is the only vector
with no specific direction.
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Vector Addition

1 If a particle moves from A to B, displacement
−→
AB. Then the

particle moves from B to C, displacement
−→
BC. The combined

effect is that the particle has moved from A to C, displacement−→
AC, is called the sum of

−→
AB and

−→
BC.

−→
AB +

−→
BC =

−→
AC

2 The sum of u + v is the vector from the initial point of u to the
terminal point of v.

3 An example mathematically. If the vector u = 〈1,2,3〉 is added to
v = 〈2,3,4〉 the resulting vector is the addition of each of the
components meaning add the x components, the y components,
and the z components to get u + v = 〈3,5,7〉.
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Scaler Multiplication

1 If c is a scalar and v is a vector, then the scalar multiple cv
is the vector whose length is |c| times the length of v and
whose direction is the same if c > 0 and opposite if c < 0.
If c = 0 or v = 0, then cv = 0.
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Components - a review

1 Vectors have components

a = 〈a1,a2,a3〉

2 A vector from the origin O to the point P where P(3,2,1) is
called the position vector of the point P.

3 Given the points A(x1, y1, z1) and B(x2, y2, z2), the vector a
with representation

−→
AB is

a = 〈x2 − x1, y2 − y1, z2 − z1〉
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Magnitude or Length

1 The magnitude or length of the vector v is the length of
any of its representations and is denoted by |v | or ||v ||. We
use the distance formula to compute the length.

|a| =
√

a2
1 + a2

2 + a2
3

2 The Magnitude is a number, not a vector!
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The Unit Vector!

1 A Unit Vector is a vector whose length is 1. For example
i, j, and k are all unit vectors where i = 〈1,0,0〉. If a 6= 0,
then the unit vector that has the same direction as a is

u =
1
|a|

a =
a
|a|
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Dot Product

1 Can we multiply two vectors? Of course we can, we get the
Dot Product.

2 If a = 〈a1,a2,a3〉 and b = 〈b1,b2,b3〉, then the dot
product of a and b is the number a · b given by

a · b = a1b1 + a2b2 + a3b3

3 So we multiply corresponding components and add. The
result is a number not a vector. It is a real number known
as a scaler.

4 The five properties of the Dot Product are given in your text
on page 779
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Dot Product Angle

1 The dot product a · b can be given a geometric
interpretation in terms of the angle θ between a and b.

2 If θ is the angle between the vectors a and b, then

a · b = |a||b| cos θ

3 If θ is the angle between the nonzero vectors a and b, then

cos θ =
a · b
|a||b|

4 Two vectors a and b are orthogonal if and only if a · b = 0.
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Projections

1 Projections can be seen as the shadow of a vector onto
another.

2 Scalar projection of b onto a: is a number compab =
a · b
|a|

3 Vector projection of b onto a: is a vector

projab =

(
a · b
|a|

)
a
|a|

=
a · b
|a|2

a

4 To find work W = F · D = |F||D| cos θ
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Cross Product

1 The cross product a× b is a vector and only works when the
vector are three-dimensional.

2 The vector a× b is perpendicular or orthogonal to both a and b.
3 If θ is the angle between a and b, then

|a× b| = |a||b| sin θ

4 Two nonzero vectors a and b are parallel if and only if

a× b = 0

5 The length of the cross product a× b is equal to the area of the
parallelogram determined by a and b.
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Equation of a Line

1 r = r0 + tv
2 x = x0 + at y = y0 + bt z = z0 + ct

3
x − x0

a
=

y − y0

b
=

z − z0

c
4 Line Segment from r0 to r1 is given by the vector equation

r(t) = (1− t)r0 + tr1
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Equation of a Plane

1 Equation of a plane is n · 〈r − r0〉 = 0
1 Where r = (x , y , z) and r0 = (x0, y0, z0) some given point on the

plane.
2 n = 〈a,b, c〉Which is a vector perpendicular to the plane.

1 n can be given like find the plane perpendicular to the vector 〈1, 2, 3〉
2 n can be derived by taking the cross product of two vectors in the

plane like the vector V1 = 〈1, 2, 3〉 and V2 = 〈4, 5, 6〉. So n = V1 × V2

where we use mathematica to give us the Cross Product.
3 n can be given by three points like

P1 = (1, 2, 3), P2 = (4, 5, 6), P3 = (7, 8, 9) where we must make
two vectors from the three points and then take their cross product.
So−−−→
P1P2 = P2−P1 = (4, 5, 6)− (1, 2, 3) = 〈4−1, 5−2, 6−3〉 = 〈3, 3, 3〉
then we get n =

−−−→
P1P2 ×

−−−→
P1P3 which we do in mathematica again.
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Calculating the Equation of a Plane

1 Now we use the n we found and a point on the line r0 = (x0, y0, z0)
for example r0 = (1,2,3).

2 Again the equation is n · 〈r − r0〉 = 0
3 So if we found n = 〈8,7,6〉
4 We would write it like 〈8,7,6〉 · 〈(x , y , z)− (1,2,3)〉 = 0
5 Simplified would be 〈8,7,6〉 · 〈x − 1, y − 2, z − 3〉 = 0
6 Taking the Dot Product would give

8(x − 1) + 7(y − 2) + 6(z − 3) = 0
7 Simplifying again gives 8x + 7y + 6z − 40 = 0 or

8x + 7y + 6z = 40
8 Now if we want to know if a point is on the plane we put in the

values for x , y , z and if they equal 40 we are on the plane.
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Derivatives of Vector Functions

1 The derivative of a vector function is the derivative of its
components.

2 The derivative describes the tangent of the given curve.
3 The derivative also gives the rate of change in each

direction of the curve.
4 Review the Differential Rules on Page 826.
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Equation of a tangent line
The equation of the tangent line can be found using the derivative of
the vector function.

1 Remembering that the equation of a line is −→r (t) =
−→r 0(t) + t−→v .

2 We can get −→r 0(t) from a curve. For example −→r (t) = 〈t , t2, t3〉, if
we want to know what this looks like at t = 1 we would put this
into our equation for r and get −→r (1) = 〈1,1,1〉.

3 We can get −→v by realizing that −→r ′(t) is the slope of the tangent
line of the curve or meaning −→r ′(t) =

−→v
4 In our example we would get −→r ′(t) = 〈1,2t ,3t2〉 and at the point

t = 1 we get −→r ′(1) = 〈1,2,3〉.
5 Now we substitute what we know into our equation of a line and

get
〈x , y , z〉 = 〈1,1,1〉+ t〈1,2,3〉

6 From here we can give either the vector or parametric equation.
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Integrating a Vector Function

1 Integrating a Vector Function is simply integrating its
components.
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Arc-Length

1 If ~r(t) = 〈x(t), y(t), z(t)〉 is a position vector in three dimensions
2 Then ~r ′(t) = {x ′(t), y ′(t), z ′(t)} is the velocity vector function or
~v(t)

3 Then Speed = |~r ′(t)|
= |〈x ′(t), y ′(t), z ′(t)〉| =

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2

=
√

(dx
dt )

2 + (dy
dt )

2 + (dz
dt )

2

4 We know that Total Distance is : D = R ∗ T (constant rate or
speed)

5 So D =speed∗T
6 All we have left to do now is multiply by time
7 So L =

∫ b
a

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2dt

8 Or L =
∫ b

a |~r
′(t)|dt
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Projectile Motion

1 x(t) = x0 + (v0 cosα)t y(t) = y0 + (v0 sinα)t − 1
2gt2

2 Or r(t) = 〈x0 + (v0 cosα)t , y0 + (v0 sinα)t − 1
2gt2〉

3 The velocity vector is the derivative of the position vector
v(t) = r′(t) = 〈v0 cosα, v0 sinα− gt〉

4 The acceleration vector is the derivative of the velocity vector
a(t) = v′(t) = r′′(t) = 〈0, −g〉

5 What is true at the maximum height of a projectile?
1 The derivative of the y component = 0. So we take the derivative of

y(t) and set it equal to zero, y ′(t) = 0. In our case
y(t) = y0 + (v0 sinα)t − 1

2 gt2 so taking the derivative with respect to
t gives y ′(t) = 0 + sinα− gt . Setting this equal to 0 and solving for

t gives t =
sinα

g
2 Now we have t or time when the particle is at the highest point. If

we substitute this t back into our position vector we will get the x
and y position at that time - giving us the highest y .
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Functions of Several Variables

1 Domain defines the values x and y can be that allow f (x , y) to be
defined.

2 Range defines the values that f (x , y) can achieve.
3 For example find the domain and range of f (x , y) =

√
9− x2 − y2:

1 To be defined we cannot take the square root of a negative number
so the domain looks like D = {(x , y)|9− x2 − y2 ≥ 0} or simplified
D = {(x , y)|x2 + y2 ≤ 9}

2 Now the range will describe what f (x , y) can be. So the smallest
x2 + y2 can be is zero and the greatest would be 9. This means that
f (x , y) can range from 0 to 3, or R = {z|0 ≤ z ≤ 3} or R = [0,3]

3 ( means the range moves up to but not including the number next to
it. [ means the range moves up to and includes the number next to
it.
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Steps to find the Limit of a Function of Two Variables

1 Test the limit to see if the number is defined. For example

lim
(x ,y)→(1,1)

√
6− x2 − y2. The limit would be

√
6− 1− 1 = 2.

2 If the limit gives you an undefined function then test the function
on a few different paths - if they are not all equal there is no limit.
For example if

lim
(x ,y ,z)→(0,0,0)

xy + yz + xz2

x2 + y2 + z2 We try the line along the x axis which

is
f (x ,0,0) = 0

x2 = 0. Now we try at a 45 degree angle in the x y
plane
f (x , x ,0) = x2

2x2 = 1
2 So we get different limits Therefore no limit

exists.
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Partial Derivatives
1 Notations For Partial Derivatives. If z = f (x , y) we write:

1 fx(x , y) = fx =
∂f
∂x

=
∂

∂x
f (x , y) =

∂z
∂x

= f1 = D1f = Dx f

2 fy (x , y) = fy =
∂f
∂y

=
∂

∂y
f (x , y) =

∂z
∂y

= f2 = D2f = Dy f

2 How to find a partial derivative of a function like f (x , y) = x2 + y2− 4xy + 5
1 To find fx , regard y as a constant and differentiate f (x , y) with respect to x .

So fx(x , y) = 2x − 4y
2 To find fy , regard x as a constant and differentiate f (x , y) with respect to y .

So fy (x , y) = 2y − 4x
3 To find the second or higher derivatives keep taking the partial derivative of

the derivative. Or for a mixed partial take the partial of the function with
respect to the inside variable then the outside.
So fxx(x , y) = 2, fyy = 2, fxy = −4

3 Clairaut’s Theorem: Suppose f is defined on a disk D that contains the
point (a,b). If the functions fxy and fyx , are both continuous on D, Then

fxy (a,b) = fyx(a,b)

4 Laplace’s Equation: Harmonic functions will satisfy the following equation,
known as the Laplace Equation:

∂2u
∂x2 +

∂2u
∂y2 = 0
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Tangent Planes

1 Equation of a Tangent Plane:

z − z0 = fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)

2 Make sure you take the partial derivatives and evaluate
them at the point of interest (x0, y0) then multiply those
slopes times x − x0. You should get an equation looking
like ax + by + cz = d . Where a, b, and c are slopes and d
is similar to your intercept in the equation of a line.

MAJ Bowman Block I - IV Review



Admin
Block I - Vectors

Block II - Problem Solving with Partial Derivatives
Multiple Integrals

Vector Calculus

Functions of Several Variables
Partial Derivatives

Linear Approximations

1 Linear Approximation is using the equation of a plane to
approximate a point some distance from your original point.

2

f (x , y) ≈ f (a,b) + fx(a,b)(x − a) + fy (a,b)(y − b)

3 So you are approximating what f is at the point (x , y)
based on a plane at the point (a,b). Your approximation
will me more accurate the closer you are to the point (a,b).
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Total Differential - Can be found using one of the
following.

1

dz = fx(x , y)dx + fy (x , y)dy =
∂z
∂x

dx +
∂z
∂y

dy

2

dz = fx(x , y)(x − a) + fy (x , y)(y − b)
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The Chain Rule - Similar to what we remember from
single variable derivatives.

1 Suppose that z = f (x , y) is a differentiable function of x and y , where
x = g(t) and y = h(t) are both differentiable functions of t . Then z is a
differentiable function of t and

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

2 Suppose that z = f (x , y) is a differentiable function of x and y , where
x = g(s, t) and y = h(s, t) are both differentiable functions of s and t . Then

∂z
∂s

=
∂z
∂x

∂x
∂s

+
∂z
∂y

∂y
∂s

∂z
∂t

=
∂z
∂x

∂x
∂t

+
∂z
∂y

∂y
∂t
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Gradient

1 The gradient ∇f (x , y , z) is a vector in the direction of the
steepest slope. For example if f (x , y , z) = x4 + xy + z then
∇f (x , y , z) = 〈4x3 + y , x ,1〉

2 Rules for Finding the Gradient
1 Get the gradient by taking the partial derivatives and put

them in vector notation! To get the gradient at a point sub in
the values of (x,y,z) into your gradient. For example if
f (x , y , z) = x4 + xy + z and you want
∇f (2,2,5) = 〈4(2)3 + (2), (2),1〉 = 〈34,2,1〉.
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Directional Derivative

1 The Directional Derivative is a Number/Scaler giving the
slope/rate of change in a specific direction.

2 Rules for Finding the Directional Derivative
1 Get the gradient by taking the partial derivatives and put

them in vector notation! Then get the gradient at the point
you are at by subbing in the values of (x,y,z)

2 Get the direction you want into vector notation
3 Get the vector into a unit vector - by dividing the vector by

its magnitude
4 Take the dot product of the unit vector and the gradient -

Du · fx fy = Duff
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Tangent Planes to Level Surfaces

1

Fx(x0, y0, z0)(x−x0)+Fy (x0, y0, z0)(y−y0)+Fz(x0, y0, z0)(z−z0) = 0
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Steps to find the Extrema of Functions of Two
Variables

1 Find the critical points. If our function was f (x , y) = x2 + y2 + x2y + 4
1 find the partial derivatives of f (x , y) fx = 2x + 2xy , fy = 2y + x2

2 Set the partial derivatives equal to zero and solve the system of two
equations and two unknowns.

2x + 2xy = 0, 2y + x2 = 0

3 Solve one of the equations for x or y So lets solve the second equation for y
where we get y = −x2

2
4 Sub your x or y into the other equation and solve for the variable. In our case

we put our y into the first equation which gives
2x + 2x(−x2

2 ) = 0 ⇒ 2x − x3 = 0 ⇒ 2x = x3

Now we need the roots of this equation. The obvious one is when x = 0. So
we factor an x out of the equation and are left with 2 = x2 ⇒ x = ±

√
2.

So our roots are x = −
√

2,0,
√

2.
5 Now we want to know what our critical points are so we sub our values of x

back into one of our equations. We get the following critical points
(−
√

2,−1), (0,0), (
√

2,−1).
2 Classify our critical points using the second derivative test.

1 The discriminant D = fxx fyy − (fxy )2

2 So we find the second partial derivatives and the mixed partial.
fxx = 2 + 2y , fyy = 2, fxy = 2x . So D(x , y) = (2y + 2)(2)− (2x)2.

3 We need to test D(x , y) at each of our critical points.
1 If D(x , y) > 0 and fxx(x , y) > 0 we have a minimum.
2 If D(x , y) > 0 and fxx(x , y) < 0 we have a maximum.
3 If D(x , y) < 0 we have a possible saddle point.

4 Testing each critical point we get:
D(−
√

2,−1) = (2(−1) + 2)(2)− 2 ∗ (−
√

2)2 ⇒ D(−
√

2,−1) = −8
Therefore (−

√
2,−1) is probably a saddle point.

D(0,0) = 2 ∗ (0)(2)− 2 ∗ (0)2 ⇒ D(0,0) = 0 Therefore (0,0) is not
definable by the second derivative test.
D(
√

2,−1) = (2(−1) + 2)(2)− 2 ∗ (
√

2)2 ⇒ D(
√

2,−1) = −8 Therefore
(
√

2,−1) is probably a saddle point.
3 Next we need to test the boundary conditions. If our boundary was

D = {(x , y)| − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.
1 We can make a box with equations of the lines as the four sides of the box.

Along this box we have the bottom line where a point on f (x , y) can be
described as
f (x ,−1) = x2 + (−1)2 + x2 ∗ (−1) + 4⇒ f (x ,−1) = x2 − x2 + 5 or
f (x ,−1) = 5
Similarly we get
f (x ,1) = 2x2 + 5, f (−1, y) = y2 + y + 5, f (1, y) = y2 + y + 5

2 Checking the end points of x and y we get
f (1,1) = 7, f (−1,−1) = 5 f (−1,1) = 7 f (1,−1) = 5

3 We should also take the partial derivatives of the boundaries and set them
equal to zero to get the max or min on the boundary, we treat this like max
and min in two dimensions where we already tested the end points above.

1 On the bottom line we get fx(x ,−1) = 2x − 2x = 0⇒ No mater what x is we get
f (x ,−1) = 5

2 On the right line we get fy (1, y) = 2y + 1 = 0⇒ y = − 1
2 So f (1,− 1

2 ) = 19
4

3 On the top line we get fx(x , 1) = 4x = 0⇒ x = 0 So f (0, 1) = 5
4 On the left line we get fy (−1, y) = 2y + 1 = 0⇒ y = − 1

2 So f (−1,− 1
2 ) = 19

4

4 We need to check our critical points. We realize the only critical point in our
domain is (0,0) which f (0,0) = 4

5 We compare all of our points and see that our Global Minimum is at
f (0,0) = 4 and our Global Maximum is at f (1,1) = 7 and f (−1,1) = 7.
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Optimization
These steps are similar to many other models we have done. If we want a box
without a top to have the maximum volume while using only 12 inches of
cardboard we do the following:

1 Find the Objective Equation - The equation we want to maximize or
minimize. V = xyz.

2 Find the Constraint Equation - Our limitations. Our Surface Area has to
satisfy 2xz + 2yz + xy = 12.

3 Use the Constraint Equation to reduce our Objective Equation to an
equation of only two variables. z = 12−xy

2(x+y)

4 Find the Critical Points of the new Objective Equation by taking the partial
derivatives and setting them equal to zero then solving the system of
equations. In this case using Mathematica can help. Our only positive
critical point is (2,2)

5 Use the Second Derivative Test to determine the classification of the critical
points. Again Mathematica can make finding the Determinant easier. In our
case we get D > 0 and fxx < 0 proving we have a maximum.

6 Test the Critical Points in the function to determine the Max or Min you are
seeking. In our case we get f (2,2) = 4

MAJ Bowman Block I - IV Review



Admin
Block I - Vectors

Block II - Problem Solving with Partial Derivatives
Multiple Integrals

Vector Calculus

Functions of Several Variables
Partial Derivatives

LaGrange Multipliers
1 Find the Objective Equation - The equation we want to maximize or

minimize.
f (x , y) = 4x + 6y .

2 Find the Constraint Equation - Our limitations. Our Surface Area has to
satisfy
x2 + y2 = 13.

3 Find the gradient of both the Objective and Constraint Equation ∇Ob,∇Co
by taking the partial derivatives and putting them in vector notation.
∇Ob(x , y) = 〈4,6〉,
∇Co(x , y) = 〈2x ,2y〉

4 Set ∇Ob(x , y) = λ∇Co(x , y).
〈4,6〉 = λ〈2x ,2y〉

5 Solve the equations ∇Ob(x , y) = λ∇Co(x , y) and Co(x , y) = k for all
values of x , y , λ by solving the system of three equations and three
unknowns. In this case I would solve the first equation for λ giving λ = 2

x . I
would then sub λ into the second equation. 6 = 2y( 2

x ). I would solve the
second equation for x giving x = 2y

3 . Finally I would sub the x into the final

equation (2y
3 )2 + y2 = 13 This would give 4y2

9 + y2 = 13. So y = ±3 then
x = ±2.

6 Evaluate Ob at all the points (x , y). The largest of these values is the max;
the smallest is the minimum. In our case Ob(2,3) = 26 and
Ob(−2,−3) = −26
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Iterated Integrals over Rectangular Regions

1 Create a 3D plot of the surface over the region
2 Draw and label the region
3 Choose the order of integration
4 Compute/Evaluate the "inside" integral
5 Compute/Evaluate the "outside" integral
6 Does the answer make sense?
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Iterated Integrals over General Regions

1 Sketch the region
2 Label the boundaries
3 Solve for and label the intersections
4 Compute/Evaluate the "inside" integral
5 Compute/Evaluate the "outside" integral
6 If possible, check answer in Mathematica
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Polar Coordinates

1 r2 = x2 + y2

2 x = r cos θ
3 y = r sin θ

4

∫∫
R

f (x , y)dA =

∫ β

α

∫ b

a
f (r cos θ, r sin θ)rdrdθ
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Polar Coordinates Algorithm

1 If possible create a 3D plot of the surface over the region
Study diagram to determine if this is positive, negative, or
mixed.
Establish a very rough idea of the volume of the space

2 Draw and Label the Region
3 Determine the limits of integration

Max and Min radial limits
Max and Min angular limits

4 Convert the integrand to an equivalent polar expression
5 Set up the iterated integral
6 Compute/Evaluate the inside integral
7 Compute/Evaluate the outside integral
8 Look back, does it make sense?
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Center of Mass

1 Draw and label the region and look at the density function
ρ(x , y)

2 Compute Mass where m =
∫∫
D
ρ(x , y)dA

3 Compute the Moments for x and y where

Mx =

∫∫
D

yρ(x , y)dA My =

∫∫
D

xρ(x , y)dA

4 Finally compute x and y which are the exact coordinates of
the center of mass.

x =
My

m
=

1
m

∫∫
D

xρ(x , y)dA, y =
Mx

m
=

1
m

∫∫
D

yρ(x , y)dA
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Triple Integrals

1 Cubic Regions -∫ ∫ ∫
B

f (x , y , z)dV =

∫ s

r

∫ d

c

∫ b

a
f (x , y , z)dx dy dz

2 General Regions -
∫ ∫ ∫

E
f (x , y , z)dV =∫ b

a

∫ g2(x)

g1(x)

∫ u2(x ,y)

u1(x ,y)
f (x , y , z)dz dy dx

MAJ Bowman Block I - IV Review



Admin
Block I - Vectors

Block II - Problem Solving with Partial Derivatives
Multiple Integrals

Vector Calculus

Iterated Integrals

Triple Integrals Cylindrical Coordinates

1 x = r cos θ y = r sin θ z = z
2 r2 = x2 + y2 tan θ = y

x z = z

3

∫ ∫ ∫
E

f (x , y , z)dV =∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)
f (r cos θ, r sin θ, z)r dz dr dθ
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Cylindrical Algorithm

1 If possible create a 3D plot of the region then label it.
2 Determine the limits of integration

Max and Min z values. Where
z1 = u1(x , y) = u1(r cos θ, r sin θ)
z2 = u2(x , y) = u2(r cos θ, r sin θ)
Max and Min radial limits.
Where r1 = h1(θ), r2 = h2(θ)
Max and Min angular limits

3 Convert the integrand to an equivalent cylindrical
expression

4 Set up the triple integral - where dV = r dz dr dθ
5 Compute/Evaluate the integrals from inside out.
6 Look back, does it make sense?
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Triple Integrals Spherical Coordinates

1 x = ρ sinφ cos θ y = ρ sinφ sin θ z = ρ cosφ
2 The distance formula gives us:

ρ2 = x2 + y2 + z2

3

∫ ∫ ∫
E

f (x , y , z)dV =∫ d

c

∫ β

α

∫ b

a
f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρ dθ dφ

4 Where E is a spherical wedge given by:

E = {(ρ, θ, φ)|a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d}
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Spherical Coordinates Algorithm

1 If possible create a 3D plot of the region then label it.
2 Determine the limits of integration

Max and Min ρ values. Similar to the radius.
Max and Min θ angle values. The angle of rotation in the xy
plane.
Max and Min φ angle values. The angle of rotation from the
positive z axis.

3 Convert the integrand to an equivalent spherical expression
4 Set up the triple integral - where ρ2 sinφ dρ dθ dφ
5 Compute/Evaluate the integrals from inside out.
6 Look back, does it make sense?
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Vector Fields

1 F (x , y) = P(x , y) î + Q(x , y) ĵ = 〈P(x , y),Q(x , y)〉
2 F (x , y , z) = P(x , y , z) î + Q(x , y , z) ĵ + R(x , y , z) k̂ =
〈P(x , y , z),Q(x , y , z),R(x , y , z)〉

3 Gradient Fields
∇f (x , y , z) = fx(x , y , z) î + fy (x , y , z) ĵ + fz(x , y , z) k̂
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Line Integrals 2 dimensions

1

∫
C

f (x , y)ds

2 L =

∫ b

a

√(
dx
dt

)2

+

(
dy
dt

)2

dt

3 Similar arguments help us define the line integral as the
following:

∫
C

f (x , y)ds =

∫ b

a
f (x(t), y(t))

√(
dx
dt

)2

+

(
dy
dt

)2

dt

4 What if we want to parameterize with something other than
t?

5 Do a similar process, but instead:

∫
C

f (x , y)ds =

∫ b

a
f (x , y(x))

√(
dx
dx

)2

+

(
dy
dx

)2

dx

6 We may also have to remember the equation of a line
segment:

−→r (t) = (1− t)−→r0 + t−→r1
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Line Integrals 3 dimensions
1 Start with a plane curve C given by the parametric

equations x = x(t) y = y(t) z = z(t) a ≤ t ≤ b
2

∫
C

f (x , y , z)ds =

∫ b

a
f (x(t), y(t), z(t))

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

dt

3 ∫ b

a
f (−→r (t))|−→r ′(t)|dt

4 If we talk about work we remember W =
−→
F ·
−→
D

5 We suppose that
−→
D =

−→
PQ the displacement vector, and

that
−→
F = Pî + Qĵ + Rk̂ .

6 Now work can be described by:

W =

∫
C

−→
F (x , y , z) ·

−→
T (x , y , z)ds =

∫
C

−→
F ·
−→
T ds

7 Also ∫
C

−→
F · d−→r =

∫ b

a

−→
F (
−→r (t)) · −→r ′(t)dt =

∫
C

−→
F ·
−→
T ds

8 So∫
C

−→
F ·d−→r =

∫
C

Pdx+ Qdy+ Rdz where
−→
F = Pî+Qĥ+Rk̂
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FTC and the line integral

1

∫
C
∇f · d~r = f (x2, y2)− f (x1, y1)

2

∫
C

~F · d~r Path Independent if and only if
∫

C

~F · d~r = 0

3 ~F is a conservative vector field on D if
∫

C

~F · d~r is path

independent.
4 If ~F (x , y) = P(x , y )̂i + Q(x , y )̂j is a conservative field then:

∂Q
∂x

=
∂P
∂y

5 Page 1050 - Theorem 6
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Green’s Theorem

1 ∫
C

P dx + Q dy =

∫∫
D

(
∂Q
∂x
− ∂P
∂y

)
dA

2

A =

∮
C

xdy = −
∮

C
ydx =

1
2

∮
C

xdy − ydx

3 Holes and Green’s Theorem
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Curl

1 If ~F = Pî + Qĵ + Rk̂ is a vector field in three dimensions
and the partial derivatives of P,Q, and R all exist, then the
curl of ~F is the vector field in three dimensions defined by:

2

curl ~F =

(
∂R
∂y
− ∂Q
∂z

)
î +

(
∂P
∂z
− ∂R
∂x

)
ĵ +

(
∂Q
∂x
− ∂P
∂y

)
k̂

MAJ Bowman Block I - IV Review



Admin
Block I - Vectors

Block II - Problem Solving with Partial Derivatives
Multiple Integrals

Vector Calculus

More about Curl

1 The Curl of a gradient field is 0. This is because the curl is
the cross product of the gradient with the gradient.

curl(∇f ) = ∇× (∇f )

2 So we have an extension of what we learned in Green’s
Theorem. If ~F is a vector field defined on all reals in three
dimensions whose component functions have continuous
partial derivatives and curl ~F = 0, then ~F is a conservative
vector field.
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Divergence

1 If ~F = Pî + Qĵ + Rk̂ is a vector field in three dimensions
and the partial derivatives of P,Q, and R all exist, then the
divergence of F is the function of three variables defined
by:

2

div ~F =
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

3 Similar to the dot product where we get a number,
divergence is:

div ~F = ∇ · ~F
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Vector Calculus

More about Divergence

1 If ~F = Pî + Qĵ + Rk̂ is a vector field in the real three
dimensions and P,Q, and R have continuous second-order
partial derivatives, then

2

div curl~F = 0
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Physical description of Divergence

1 Fluid flow again is one of the best examples. Divergence
can be seen as the net rate of change of the mass of the
fluid flowing from the point P per unit volume. Or the
divergence measures the tendency of the fluid to diverge
from point P.

2 If div ~F = 0 at a point P, the the fluid is said to be
incompressible.
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Laplace Operator

1 If we take the divergence of the gradient vector of a function
of three variables, we get:

2

div(∇f ) = ∇ · (∇f ) =
∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2

3 This is often called the Laplace operator and looks like:
4

∇2 = ∇ · ∇
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Vector Form of Green’s Theorem

1 ∮
C

~F · d~r =

∮
C

Pdx + Qdy

2 If we regard ~F as a vector field in three dimensions with the
third component 0, we get:

3

curl~F =

(
∂Q
∂x
− ∂P
∂y

)
k̂
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Vector Form of Green’s Theorem

1 So:

(curl~F ) · k̂ =

(
∂Q
∂x
− ∂P
∂y

)
k̂ · k̂ =

∂Q
∂x
− ∂P
∂y

2 We can rewrite the Green’s Theorem in vector form:
3 ∮

C

~F · d~r =

∫∫
D
(curl~F ) · k̂dA
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Second Vector Form of Green’s Theorem

1 ∮
C

~F · ~nds =

∫∫
D

div~F (x , y)dA
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Parametric Surface

1

~r(u, v) = x(u, v )̂i + y(u, v )̂j + z(u, v)k̂
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Tangent Planes

1

~rv =
∂x
∂v

(u0, v0)̂i +
∂y
∂v

(u0, v0)̂j +
∂z
∂v

(u0, v0)k̂

~ru =
∂x
∂u

(u0, v0)̂i +
∂y
∂u

(u0, v0)̂j +
∂z
∂u

(u0, v0)k̂

2

~n = ~ru ×~rv

3

~n · (~r −~r0) = 0
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Surface Area

1

A(S) =

∫∫
D
|~ru ×~rv |dA

2

A(S) =

∫∫
D

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dA
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Surface Integrals

1 ∫∫
S

f (x , y , z)dS =

∫∫
D

f (~r(u, v))|~ru ×~rv |dA

2

∫∫
S

f (x , y , z)dS =

∫∫
D

f (x , y ,g(x , y))

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dA
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Surface Integrals of Vector Fields

1 ∫∫
S

~F · d~S =

∫∫
S

~F · ~ndS

2 This is called the flux of ~F across S.
3 ∫∫

S

~F · d~S =

∫∫
S

~F · (~ru ×~rv )dA

4 ∫∫
S

~F · d~S =

∫∫
S

(
−P

∂g
∂x
−Q

∂g
∂y

+ R
)

dA
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