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@ Review
@ Next Week - TEE

© Homework 9 - Section 11.8 - 11.10 and Calc Labs
Due Today 12 December
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@ Homework 9 a returned. You should feel comfortable with
most of this material.
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@ End of Course Survey on CIS due by 19 December.
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@ TEE INFO

@ Time: 0735-1105, Tuesday, 16 December
@ Location: Bartlett Hall - Not Thayer!

©@ B3-BH304
@ C3-BH322 - Change to previous
© D3 -BH306

© No Computer or Calculator
@ 5 - 8.5x11 sheets of handwritten notes

© Study Session Saturday Morning, 0830-1100, TH 342, LTC
Outing.
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Block | - Vectors Equation of a Line

Equation of a Plane
Arc-Length
Projectile Motion

Three Dimensional Coordinate System

@ Distance Formula in Three Dimensions: The distance |P; Pz
between the points P;(x1, ¥1,21) and Pao(Xo, yo, 22) is

|P1P2| = \/(Xz—X1)2+(Y2—J/1)2+(22—Z1)2

@ Equation of a Sphere: An equation of a sphere with center
C(h,k,I) and radius r is

(X—h2+(y—KkPZ+(z-1)2=r?
If the center is the origin O, then the equation is

X2 +y?+ 22 =17
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Vectors

Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length

Projectile Motion

@ A vector has both magnitude and direction.

@ A vector is often represented by an arrow or a directed line
segment. The length of the arrow represents the magnitude and
the arrow points in the direction of the vector.

© A vector is represented by a bold (v) or an arrow above it (V).

© Suppose a particle or ball moves along a line segment from point
Ato point B. The displacement vector v, has initial point A (the
tail) and terminal point B (the tip) and we write this as v = AB.

©@ Another vector u = CD could have the same length and direction
as v but be in a different position. In this case u and v are
equivalent (or equal) and we can write u = v.

© The zero vector, denoted by 0, has length 0. It is the only vector
with no specific direction.
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Vectors

Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Vector Addition

@ If a particle moves from A to B, displacement AB. Then the
particle moves from B to C, displacement BC. The combined
effect is that the particle has moved from A to C, displacement
A_C>, is called the sum of AB and BC.

AB + BC = AC

@ The sum of u + v is the vector from the initial point of u to the
terminal point of v.

© An example mathematically. If the vector u = (1,2, 3) is added to
v = (2, 3,4) the resulting vector is the addition of each of the
components meaning add the x components, the y components,
and the z components to getu + v = (3,5,7).
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Vectors
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Arc-Length
Projectile Motion

Scaler Multiplication

@ If cis a scalar and v is a vector, then the scalar multiple cv
is the vector whose length is |c| times the length of v and
whose direction is the same if ¢ > 0 and opposite if ¢ < 0.
Ifc=0o0rv=0,thencv=0.
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Vectors
Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Components - a review

@ Vectors have components

a=(a,ap, a)

@ A vector from the origin O to the point P where P(3,2,1) is
called the position vector of the point P.

© Given the points A(x1, y1,21) and B(xo, ¥, 22), the vector a
—
with representation AB is

a=(Xo—Xx1, Yo—Y1, Zo—2Z1)
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Vectors
Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Magnitude or Length

@ The magnitude or length of the vector v is the length of
any of its representations and is denoted by |v| or ||v||. We
use the distance formula to compute the length.

_ /R 2
la| = /a7 + a5 + a3

© The Magnitude is a number, not a vector!
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Equation of a Plane
Arc-Length
Projectile Motion

The Unit Vector!

@ A Unit Vector is a vector whose length is 1. For example
i,j, and k are all unit vectors where i = (1,0,0). Ifa # 0,
then the unit vector that has the same direction as a is

1 a

u= —a= —
| a|
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Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Dot Product

@ Can we multiply two vectors? Of course we can, we get the
Dot Product.

Q Ifa=(aj,a, as) and b = (by, by, b3), then the dot
product of a and b is the number a - b given by

a-b=aiby + abo + azbs

© So we multiply corresponding components and add. The
result is a number not a vector. It is a real number known
as a scaler.

© The five properties of the Dot Product are given in your text
on page 779
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Block | - Vectors Equation of a Line
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Arc-Length
Projectile Motion

Dot Product Angle

@ The dot product a - b can be given a geometric
interpretation in terms of the angle ¢ between a and b.

© If 0 is the angle between the vectors a and b, then
a-b = |a||b|cosd
© If 0 is the angle between the nonzero vectors a and b, then

a-b

cosf = ———
b

© Two vectors a and b are orthogonal if and only ifa- b = 0.
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Vectors

Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Projections

@ Projections can be seen as the shadow of a vector onto
another.

_— . a-b
@ Scalar projection of b onto a: is a number comp,b = W

© Vector projection of b onto a: is a vector

oroj.b — (a-b)a_a-b
¢ al /) lal  [a?

© To find work W =F - D = |F||D|cos ¢
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Vectors

Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Cross Product

@ The cross product a x b is a vector and only works when the
vector are three-dimensional.

@ The vector a x b is perpendicular or orthogonal to both a and b.
© If 0 is the angle between a and b, then

|a x b| = |a||b|sin®
© Two nonzero vectors a and b are parallel if and only if
axb=0

© The length of the cross product a x b is equal to the area of the
parallelogram determined by a and b.
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Equation of a Plane
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Projectile Motion

Equation of a Line

Qr=rot+tv
Q@ x=xy+at y=y+bt z=2zy+ct
X=X Y—Y Z—2
° a b ¢
© Line Segment from rg to rq is given by the vector equation

r(t) = (1 —t)rg + trq
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Vectors

Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length
Projectile Motion

Equation of a Plane

@ Equationof aplaneisn-(r—r) =0
@ Where r = (x,y,z) and ry = (X0, Yo, Zo) SOme given point on the
plane.
@ n = (a, b, c) Which is a vector perpendicular to the plane.
@ n can be given like find the plane perpendicular to the vector (1,2, 3)
@ n can be derived by taking the cross product of two vectors in the
plane like the vector V4 = (1,2,3) and V> = (4,5,6). Son =V; x V,
where we use mathematica to give us the Cross Product.
© n can be given by three points like
Py =(1,2,3), P.=(4,56), Ps;=(7,8,9)wherewe must make
two vectors from the three points and then take their cross product.
So_,
PP, =P,— Py =(4,5,6)—(1,2,3)=(4—-1,5-2,6—-3) = (3,3,3)
then we getn = .E’1—P£ X rF’a which we do in mathematica again.
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Block | - Vectors Equation of a Line
Equation of a Plane
Arc-Length

Projectile Motion

Calculating the Equation of a Plane

@ Now we use the n we found and a point on the line ry = (xg, Yo, 20)
for example rp = (1,2, 3).

© Again the equationisn- (r —ry) =0

© Soif we found n = (8,7,6)

Q@ We would write it like (8,7,6) - {((x,y,2) — (1,2,3))

@ Simplified would be (8,7,6) - (x -1,y —2,z—3) =

© Taking the Dot Product would give
8(x—1)+7(y—2)+6(z—3)=0

@ Simplifying again gives 8x + 7y +6z —40 =0 or
8x+7y+6z=40

© Now if we want to know if a point is on the plane we put in the
values for x, y, z and if they equal 40 we are on the plane.

0
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Derivatives of Vector Functions

@ The derivative of a vector function is the derivative of its
components.

© The derivative describes the tangent of the given curve.

© The derivative also gives the rate of change in each
direction of the curve.

© Review the Differential Rules on Page 826.
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Equation of a Plane
Arc-Length
Projectile Motion

Equation of a tangent line

The equation of the tangent line can be found using the derivative of
the vector function.
@ Remembering that the equation of a line is 7' (t) = Fo(t) + t V.
@ We can get 7 o(t) from a curve. For example 7 (t) = (t, {2, 1), if
we want to know what this looks like at t = 1 we would put this
into our equation for r and get 7(1) (1,1,1).
@ We can get V by realizing that 7/( ) s the slope of the tangent
line of the curve or meaning r”(t ri(t) = %
@ In our example we would get 7/(t) = (1,
t=1weget r’'(1)=(1,2,3).
© Now we substitute what we know into our equation of a line and
get
(x,y,z) =(1,1,1) + t(1,2,3)
© From here we can give either the vector or parametric equation.
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Projectile Motion

Integrating a Vector Function

@ Integrating a Vector Function is simply integrating its
components.
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Arc-Length

t)) is a position vector in three dimensions
(8),Z/(t)} is the velocity vector function or

n Speed = |F/(1)]
= [(X(8),y'(1), Z(1)] = V(X' ()2 + (V' (D)2 + (Z(1))2
= J(G7+(Gr+ (%7
© We know that Total Distance is : D = R = T (constant rate or
speed)
© So D =speedxT
© All we have left to do now is multiply by time
b
@ SoL=[]VX(1)?+(y(1)?+(2(t)>ct
Q OrL= [P|P(t)at
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Projectile Motion

Q@ x(t)=x+ (vocosa)t  y(t)=yo+ (vosina)t— 3gt2
Q Orr(t) = (X + (vocosa)t, yo+ (Vosina)t— Sgt?)
© The velocity vector is the derivative of the position vector
v(t) =r(t) = (ycosa, VwsSina-— gt
© The acceleration vector is the derivative of the velocity vector
a(t) =v'(t) =r"(t) = (0, -9
@ What is true at the maximum height of a projectile?
@ The derivative of the y component = 0. So we take the derivative of
y(t) and set it equal to zero, y’(t) = 0. In our case
y(t) = yo + (vo sin @)t — 3 gt? so taking the derivative with respect to

t gives y'(t) = 0 + sina — gt. Setting this equal to 0 and solving for

. Sin
t gives t = &

@ Now we have t or time when the particle is at the highest point. If
we substitute this t back into our position vector we will get the x
and y position at that time - giving us the highest y.
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Q Block Il - Problem Solving with Partial Derivatives
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Partial Derivatives

Functions of Several Variables

@ Domain defines the values x and y can be that allow f(x, y) to be
defined.

@ Range defines the values that f(x, y) can achieve.
@ For example find the domain and range of f(x, y) = /9 — x2 — y2:

@ To be defined we cannot take the square root of a negative number
so the domain looks like D = {(x, ¥)|9 — x2 — y2 > 0} or simplified
D= {(x,y)|x* +y? < 9}

@ Now the range will describe what f(x, y) can be. So the smallest
x? + y? can be is zero and the greatest would be 9. This means that
f(x,y) canrange from0to 3,or R={z|0 <z <3} or R=0,3]

© ( means the range moves up to but not including the number next to

it. [ means the range moves up to and includes the number next to
it.
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Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives ) P
Partial Derivatives

Steps to find the Limit of a Function of Two Variables

@ Test the limit to see if the number is defined. For example

lim /6 —x2—y2 Thelimtwouldbe v6 —1—-1=2.
(x.y)—(1,1) Y

@ If the limit gives you an undefined function then test the function
on a few different paths - if they are not all equal there is no limit.
For example if

2

% We try the line along the x axis which
(x,y,2)—(0,0,0) X<+ y<s+2
is
f(x,0,0) = % = 0. Now we try at a 45 degree angle in the x y
plane
f(x,x,0) = § = % So we get different limits Therefore no limit
exists.
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Partial Derivatives

Outline

Q Block Il - Problem Solving with Partial Derivatives

@ Partial Derivatives
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Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Partial Derivatives

@ Notations For Partial Derivatives. If z = f(x, y) we write:

of 9 oz

Q Kix.y)=Ff= % = %f(X,Y) = 27 =fy = D¢f = Dyf
z

Q f(x.y)="f,= = @f(xﬁy): 3= f = Dof = Dyf

@ How to find a partial derivative of a function like f(x, y) = x® 4y — 4xy +5
@ Tofind f;, regard y as a constant and differentiate f(x, y) with respect to x.
So fi(x,y) =2x — 4y
@ Tofind f,, regard x as a constant and differentiate f(x, y) with respect to y.
So fy(x,y) =2y —4x
© To find the second or higher derivatives keep taking the partial derivative of
the derivative. Or for a mixed partial take the partial of the function with
respect to the inside variable then the outside.
So fx(x,y) =2, fy =2, fy,=-4
@ Clairaut's Theorem: Suppose f is defined on a disk D that contains the
point (a,b). If the functions f,, and f,x, are both continuous on D, Then

fiy(a, b) = fyx(a, b)

@ Laplace’s Equation: Harmonic functions will satisfy the following equation,
known as the Laplace Equation:
Fu Fu_
ax2 ' gy2
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Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Tangent Planes

@ Equation of a Tangent Plane:

z — 29 = fx(Xo0, Y0)(X — Xo) + fy(Xo0, Yo)(¥ — Yo)

© Make sure you take the partial derivatives and evaluate
them at the point of interest (xo, yp) then multiply those
slopes times x — xp. You should get an equation looking
like ax + by + cz = d. Where a, b, and c are slopes and d
is similar to your intercept in the equation of a line.
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Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Linear Approximations

@ Linear Approximation is using the equation of a plane to
approximate a point some distance from your original point.

(2]
f(x,y) =~ f(a,b) + fx(a,b)(x — a) + fy(a,b)(y — b)

© So you are approximating what f is at the point (x, y)
based on a plane at the point (a, b). Your approximation
will me more accurate the closer you are to the point (a, b).
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Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Total Differential - Can be found using one of the
following.

o} 0
dz = fy(x,y)dx + f,(x,y)dy = 8—)Z(dx + B—}Z/dy

dz = fx(x, y)(x — &) + fy(x, y)(y — b)

MAJ Bowman Block | - IV Review



Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

The Chain Rule - Similar to what we remember from
single variable derivatives.

@ Suppose that z = f(x, y) is a differentiable function of x and y, where
x = g(t) and y = h(t) are both differentiable functions of t. Then zis a
differentiable function of t and
dz_ozox  ozay
dt — oxdt Oy dt
© Suppose that z = f(x, y) is a differentiable function of x and y, where
x =g(s,t) and y = h(s, t) are both differentiable functions of s and t. Then

0z _ozox ozoy 0z _ozox  ozdy
ds  Ox0s 0Oyos ot ox ot 9y ot
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Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Gradient

@ The gradient Vf(x, y, z) is a vector in the direction of the
steepest slope. For example if f(x, y, z) = x* + xy + z then
Vix,y,z) = (4x3 4+ y,x,1)

@ Rules for Finding the Gradient

@ Get the gradient by taking the partial derivatives and put
them in vector notation! To get the gradient at a point sub in
the values of (x,y,z) into your gradient. For example if
f(x,y,z) = x* + xy + z and you want
Vf(2,2,5) = (4(2)° + (2),(2),1) = (34,2,1).
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Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Directional Derivative

@ The Directional Derivative is a Number/Scaler giving the
slope/rate of change in a specific direction.
@ Rules for Finding the Directional Derivative
© Get the gradient by taking the partial derivatives and put
them in vector notation! Then get the gradient at the point
you are at by subbing in the values of (x,y,z)
@ Get the direction you want into vector notation
© Get the vector into a unit vector - by dividing the vector by
its magnitude
@ Take the dot product of the unit vector and the gradient -
Dy - fif, = Dyff
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Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Tangent Planes to Level Surfaces

Fx(X0, Y0, 20)(Xx—X0)+Fy (X0, Y0, 20) (Y —¥0)+Fz(X0, Yo, 20)(Z2—20) =
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Partial Derivatives

Steps to find the Extrema of Functions of Two
Variables

© Find th crlal i, o nctonwas () x: o
O fnd he parta dervatves of (x,y) 2
L deatees sl 15kt and o syt o v

equations and two Unknowns
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© W neet st D{x. ) et sach of o e pois.
@ 110(x.) > 04 x.1) > Owo hav a i
0 1D03) 2 0smaru(ry) -0
15(x ) - e hve 3 possil s pi
o g oncaporweger _
~VZ1) = (@1 +2)2) 22 (V= D(-vE-1)
herior (V3 1)1 ol sl i
0.0 2+ (0)2) 2 (0F 5 D(0.0) - 0 Therefre (0,0) s rat
ofnaie by the sscond derate tst
1) 12)@2) 22 (V2 = O(vZ-1)= -8 Therelore
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@ Next we need to test the boundary conditons. Ifour boundary was
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Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

Optimization

These steps are similar to many other models we have done. If we want a box
without a top to have the maximum volume while using only 12 inches of
cardboard we do the following:

@ Find the Objective Equation - The equation we want to maximize or
minimize. V = xyz.

@ Find the Constraint Equation - Our limitations. Our Surface Area has to
satisfy 2xz +2yz + xy = 12.

© Use the Constraint Equation to reduce our Objective Equation to an

equation of only two variables. z = 21(2);)%

© Find the Critical Points of the new Objective Equation by taking the partial
derivatives and setting them equal to zero then solving the system of
equations. In this case using Mathematica can help. Our only positive
critical point is (2, 2)

@ Use the Second Derivative Test to determine the classification of the critical
points. Again Mathematica can make finding the Determinant easier. In our
case we get D > 0 and fyx < 0 proving we have a maximum.

@ Test the Critical Points in the function to determine the Max or Min you are
seeking. In our case we get f(2,2) = 4
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Functions of Several Variables

Block Il - Problem Solving with Partial Derivatives . .
Partial Derivatives

LaGrange Multipliers

@ Find the Objective Equation - The equation we want to maximize or
minimize.

f(x,y) = 4x +6y.

@ Find the Constraint Equation - Our limitations. Our Surface Area has to
satisfy
X2 +y?=13.

@ Find the gradient of both the Objective and Constraint Equation VOb, V Co
by taking the partial derivatives and putting them in vector notation.
VOb(x,y) = (4,6),

VCo(x,y) = (2x,2y)

@ Set VOb(x,y) = AVCo(x,y).
(4,6) = \(2x,2y)

@ Solve the equations VOb(x, y) = AV Co(x, y) and Co(x, y) = k for all
values of x, y, A by solving the system of three equations and three
unknowns. In this case | would solve the first equation for A giving A = % |
would then sub X into the second equation. 6 = 2y(2). | would solve the
second equation for x giving x = %y Finally | would sub the x into the final
equation (Z)2 + y2 = 13 This would give £ + y2 = 13. So y = +3 then
X =+2.

@ Evaluate Ob at all the points (x, y). The largest of these values is the max;
the smallest is the minimum. In our case Ob(2,3) = 26 and
Ob(-2,-3) = -26




Iterated Integrals
Multiple Integrals

Outline

e Multiple Integrals
@ lterated Integrals
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Iterated Integrals
Multiple Integrals

lterated Integrals over Rectangular Regions

@ Create a 3D plot of the surface over the region
© Draw and label the region

© Choose the order of integration

@ Compute/Evaluate the "inside" integral

©@ Compute/Evaluate the "outside" integral

© Does the answer make sense?
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Iterated Integrals
Multiple Integrals

lterated Integrals over General Regions

@ Sketch the region

© Label the boundaries

© Solve for and label the intersections

@ Compute/Evaluate the "inside" integral
©@ Compute/Evaluate the "outside" integral
Q If possible, check answer in Mathematica
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Iterated Integrals
Multiple Integrals

Polar Coordinates

Q@ rP—x24y?
@ x=rcosf
Q y=rsind

B b
(%) //f(x,y)dA:/ / f(rcos@,rsin6)rdrdd
«@ a

R
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Iterated Integrals
Multiple Integrals

Polar Coordinates Algorithm

@ If possible create a 3D plot of the surface over the region

o Study diagram to determine if this is positive, negative, or
mixed.
e Establish a very rough idea of the volume of the space

© Draw and Label the Region
© Determine the limits of integration
e Max and Min radial limits
e Max and Min angular limits
© Convert the integrand to an equivalent polar expression
@ Set up the iterated integral
© Compute/Evaluate the inside integral
@ Compute/Evaluate the outside integral
© Look back, does it make sense?
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Iterated Integrals
Multiple Integrals

Center of Mass

@ Draw and label the region and look at the density function

p(X,¥)
@ Compute Mass where m = [ p(x, y)dA
D

© Compute the Moments for x and y where

M= [[ votxy)aa My, = [[ xox.y)0n
D D

© Finally compute X and y which are the exact coordinates of
the center of mass.

//prydA y—— = /ypxy
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Iterated Integrals
Multiple Integrals

Triple Integrals

@ Cubic Regions -

///Bf(x’y’z)d‘/:/rsfcd/abf(x,y,z)dx dy dz

@ General Regions - /// f(x,y,z)dV =
E

xy)
/ / / f(x,y,z)dz dy dx
91(x)
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Iterated Integrals
Multiple Integrals

Triple Integrals Cylindrical Coordinates

Q@ x=rcosf) y=rsing z==z
Q@ rP=x2+y? tano=%L z=z

e///fxy,de:

hy(0) 2(rcos 6,rsinf)
/ / / f(rcos@,rsind,z)r dz dr do
hi (0

(rcos@,rsin®)
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Iterated Integrals
Multiple Integrals

Cylindrical Algorithm

@ If possible create a 3D plot of the region then label it.
© Determine the limits of integration
e Max and Min z values. Where
zy = ui(x,y) = uy(rcos 0, rsing)
Zo = Ua(X,y) = Up(rcosé, rsing)
e Max and Min radial limits.
Where ry = hi(0), r = ho(6)
e Max and Min angular limits
© Convert the integrand to an equivalent cylindrical
expression
© Set up the triple integral - where dV = r dz dr df
© Compute/Evaluate the integrals from inside out.
@ Look back, does it make sense?
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Iterated Integrals
Multiple Integrals

Triple Integrals Spherical Coordinates

Q@ x=psingcosfd y=psingsind z=pcosg
@ The distance formula gives us:

p2=X2+y2+22

Qo ///Ef(x,y,z)dV:

d 8 rb
/ / / f(psin¢cos b, psingsing, pcos ¢)p®sing dp do do
Cc @ a
© Where E is a spherical wedge given by:

E={(p0,9)la<p<ba<bh<pc<o¢<d}
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Iterated Integrals
Multiple Integrals

Spherical Coordinates Algorithm

@ If possible create a 3D plot of the region then label it.
© Determine the limits of integration

e Max and Min p values. Similar to the radius.
e Max and Min ¢ angle values. The angle of rotation in the xy
plane.
e Max and Min ¢ angle values. The angle of rotation from the
positive z axis.
© Convert the integrand to an equivalent spherical expression
@ Set up the triple integral - where p?sin¢ dp d6 d¢
© Compute/Evaluate the integrals from inside out.
© Look back, does it make sense?
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Vector Calculus

Vector Fields

Q@ F(x,y) = P(x,y) i+ Q(x,y) ] = (P(x,y), Q(x,¥))_

Q F(x,y,2) =P(x,y,z) i+ Q(x,y,.z) j+ R(x,y,z) k
(P(x.y.2),Q(x.y,2),R(x,y,2))

© Gradient Fields

Vf(xvyvz) = fX(X7y72)7+ fy(XayaZ)7+ fZ(X7y7Z) /R
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Vector Calculus

Line Integrals 2 dimensions

0/01‘(x.,y)ds
o L:/j

© Similar arguments help us define the line integral as the
following:

[ o (3] (2)'

@ What if we want to parameterize with something other than
t?

© Do a similar process, but instead:

/fxydsf/fxy <Z§> (g,i)dx

@ We may also have to remember the equation of a line
segment:

—

r(t)=0-0m+tr
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Vector Calculus

Line Integrals 3 dimensions

@ Start with a plane curve C given by the parametric
equations x = x(t) y=y(t) z=2z(t) a<t<b

=] /cf(x.y,z)ds:
[reoon(5) ()" (5)'

o b
[ T e

Q If we talk about work we remember W = F.D

@ We suppose that D = PQ the displacement vector, and
that F = Pi+ @) + Rk.

@ Now work can be described by:

W:/ T—"(x‘y.z)-?(x.y.z)ds:/ F.Tds
c c

@ Also

-Tds

-l

'/;?-d?: /b?(?(z))-?'(t)dr:/

Ja Jc

Q So

/ Fd7 = / Pdx+ Qdy+ Rdz where F = Pi+Qh+Rk
Jc JC
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Vector Calculus

FTC and the line integral

o /CVf‘ ar = f(xa, y2) — f(x1, 1)
Qo / F - d7 Path Independent if and only if/ F.dr=0
c c

@ F is a conservative vector field on D if/ F - dfis path

c
independent. A .
Q If F(x,y) = P(x,y)i + Q(x, y)J is a conservative field then:
0Q _ ok
ox Oy

© Page 1050 - Theorem 6
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Vector Calculus

Green’s Theorem

29Q P
Pdx + Qd :// (—)dA
Cc 4 p \ 0x ay

A:]{xdy:—%ydx:1%xdy—ydx
c c 2 Jc

© Holes and Green’s Theorem

(2]
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Vector Calculus

@ If F = Pi+ Q] + Rk is a vector field in three dimensions
and theﬁpartial derivatives of P, Q, and R all exist, then the
curl of F is the vector field in three dimensions defined by:

curl F = oR _oQ i+ oF _oR j+ 9Q _op k
~\dy o0z oz  ox)! ox Oy

(2]
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Vector Calculus

More about Curl

@ The Curl of a gradient field is 0. This is because the curl is
the cross product of the gradient with the gradient.

curl(Vf) =V x (Vf)

@ So we have an extension of what we learned in Green’s
Theorem. If F is a vector field defined on all reals in three
dimensions whose component functions have continuous
partial derivatives and curl F = 0, then F is a conservative
vector field.
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Vector Calculus

Divergence

@ If F = Pi+ Q] + Rk is a vector field in three dimensions
and the partial derivatives of P, Q, and R all exist, then the
divergence of F is the function of three variables defined
by:

° auf 0P 90 0

0x Oy 0z

© Similar to the dot product where we get a number,

divergence is:

dvF=V.F
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Vector Calculus




Vector Calculus

More about Divergence

@ If F = Pi+ Q] + Rk is a vector field in the real three
dimensions and P, Q, and R have continuous second-order
partial derivatives, then

2] i}
diveurlF=0
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Vector Calculus

Physical description of Divergence

@ Fluid flow again is one of the best examples. Divergence
can be seen as the net rate of change of the mass of the
fluid flowing from the point P per unit volume. Or the
divergence measures the tendency of the fluid to diverge
from point P.

@ If div F = 0 at a point P, the the fluid is said to be
incompressible.
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Vector Calculus

Laplace Operator

@ If we take the divergence of the gradient vector of a function
of three variables, we get:

(2]

: o*f  9?f  0Pf
dlv(Vf):V.(Vf):WJraT/z+@

© This is often called the Laplace operator and looks like:

o
VE=V.V
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Vector Calculus

Vector Form of Green’s Theorem

Q
fﬁ-dfzf Pdx + Qdy
C C

@ If we regard F as a vector field in three dimensions with the
third component 0, we get:

o
curlE = (29 9P\
-\ ox Oy
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Vector Calculus

Vector Form of Green’s Theorem

Q@ So:

@ We can rewrite the Green’s Theorem in vector form:

° ]{Cﬁ.dF://D(cunF')-RdA
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Vector Calculus

Second Vector Form of Green’s Theorem

fﬁ-ﬁds:// divF(x, y)dA
C D
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Vector Calculus

Parametric Surface

A

F(u, v) = x(u, v)i + y(u, v)j + z(u, v)k
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Vector Calculus

Tangent Planes

o
o ox A 0 ~ 0z i
ry, = W(Uo, Vo)i + 8%(“0» Vo)j + @(“0’ Vo)K
L Ox 5 0 5, 0z k
r, = %(uo, Vo)l + %(Uo, Vo) + %(uo, Vo)k
(2]
ﬁ - _‘u X _'V
(s}
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Vector Calculus

Surface Area

A(S)://D\Fu x 7, |dA
o= [l () ()
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Vector Calculus

Surface Integrals

//Sf(x,y,z)dsz//Df(F(u, I, x 7| dA

2]

//fxy, 2)dS = //fxygxy\/ (ax>2+<g}Z/>ZdA
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Vector Calculus

Surface Integrals of Vector Fields

o —
//F‘-dS://F‘-ﬁdS
S S

@ This is called the flux of F across S.

° //Sﬁ-déz//sﬁ.(Fux?V)dA
//F d3 = //< ag+R)dA
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