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SUMMARY

In this thesis we study the nonlinear propagation of tsunami waves. In the introduction

we explain the basics of the water wave equation. We take the system of ordinary differential

equations describing wave behavior and find an exact solution for the time variable in the

system. We use the Euler method to approximate the system and test it against the exact

solution. We further use the ”Leap-Frog” and 4th Order Runge-Kutta method to approximate

the system and test those results against the exact solution. We confirm the order of error

of each of these methods. We then start working with Fast Fourier Transforms to develop a

spatial approximation method. Putting the methods together we can now approximate the

wave in space and time. We test this approximation using a traveling wave because we can

test it against an exact solution. In the second part of this thesis we introduce non-linearity

into the program and add depth to the water which had been infinite before. We test both the

linear and nonlinear model using a Gaussian function to illustrate the need for the nonlinear

system. Finally we take three tsunami waves and approximate their behavior paying particular

attention to the leading edge of the wave.

ix



CHAPTER 1

INTRODUCTION

1.1 Introduction

In this thesis, we study the evolution of tsunami waves as they move toward the shore.

We will use initial conditions on the surface of the ocean after a dip-slip fault, a strike-slip

fault, and a tensile fault. Developing first exact solutions to the linear water wave equations

we will test three different time approximation schemes against the exact solution. We then

introduce a spatial approximation scheme. We put these schemes together and test them

against ”smooth” waves and then against a traveling wave of which we have an exact solution.

We introduce depth and nonlinearity into the system and test the new system against the well

known Gaussian curve. Finally we use the three tsunami waves as initial conditions and observe

the propagation of these waves in space and time.

1.2 Basics of the Water Wave Problem

1.2.1 Newtonian fluid mechanics

The governing relations of (Newtonian) fluid mechanics are the Navier–Stokes equations

(Ach90; Lam93). These equations can be used to model a wide array of physical phenomena

including the motion of ocean waves which interest us in this research. However, for waves on

the surface of an ocean there are several modeling assumptions we may make which result in

1
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negligible disagreement with experimental observations and significantly simplify the governing

equations. These assumptions are:

1. The fluid is incompressible.

2. The fluid is irrotational.

3. The fluid is inviscid.

1.2.2 Euler Equations or ”water wave problem”

Such a fluid is typically termed an “ideal” or “perfect” fluid and the resulting equations are

the Euler equations. As there are several systems which go by this name it is typical to refer

to these equations as the “water wave problem.” It is the purpose of this section to briefly

introduce them and to motivate the model equations which we consider.

To begin, let the body of water (ocean) whose motion we wish to model occupy the domain

Sh,η := {(x, y) ∈ Rd−1 ×R | − h < y < η(x, t)}.

Here η is the free air–fluid interface and h is the mean depth of the fluid (which may be infinite).

Due to irrorationality, the velocity of particles in the fluid, u, may be expressed as the gradient

of a potential function, ϕ:

u = ∇ϕ

giving rise to the term “potential flow.” The incompressibility of the fluid states that the

divergence of the velocity is zero implying that
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0 = ∇ · [u] = ∇ · [∇ϕ] = ∆ϕ, (1.1)

i.e. that ϕ satisfies Laplace’s equation inside Sh,η.

Regarding boundary conditions, we demand that fluid particles have zero normal component

of velocity at the bottom (though tangential velocities, or “slip,” is allowed) so that

∂yϕ = 0, y = −h. (1.2)

For a fluid of infinite depth this is generalized by

∂yϕ → 0, y → −∞. (1.3)

At the free surface we must specify both a boundary condition for ϕ (so that our problem is

“well posed”) and an evolution equation for η. The latter is given by the “Kinematic condition”

which requires that particles which start at the free surface always stay there:

∂tη − ∂yϕ +∇xη · ∇xϕ = 0. (1.4)

1.2.3 Navier-Stokes as the ”Bernoulli equation”

Finally, the Navier–Stokes equations make an appearance (after an integration (Ach90;

Lam93)) as the “Bernoulli equation”:
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∂tϕ +
1
2
|∇ϕ|2 + gη = 0. (1.5)

We note that (Equation 1.5) only takes into account gravitational forces and excludes surface

tension; this can easily be included if desired.

1.2.4 Dirichlet-Neumann Operator (DNO)

Due to the simple nature of the governing equation in the fluid bulk (Laplace’s equation),

it is not surprising that the water wave problem Equation 1.1, Equation 1.2, Equation 1.4, and

Equation 1.5 can be restated on the surface of the fluid domain. The surprising discovery of

Zakharov (Zak68) is that if the proper surface variables are chosen then, in fact, the resulting

system of evolution equations is Hamiltonian. Zakharov’s variables are (η, ξ), where

ξ(x, t) := ϕ(x, η(x, t), t) (1.6)

is the velocity potential at the surface of the fluid. Zakharov’s formulation of the water wave

problem in terms of (η, ξ) is somewhat implicit in nature and a clarifying contribution was

made by Craig & Sulem (CS93) who introduced the Dirichlet–Neumann operator (DNO) to

the problem. For the water wave problem this operator relates the Dirichlet data (values of ϕ

at η) for Laplace’s equation on the domain Sh,η to Neumann data (values of ∂Nϕ at η). More

precisely, given the problem:
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∆ϕ = 0 ∈ Sh,η (1.7a)

ϕ(x, η) = ξ(x) (1.7b)

∂yϕ(x,−h) = 0, (1.7c)

the DNO, G, produces the normal derivative at the surface:

G(η)[ξ] :=
(
∇ϕ|y=η

)
·N = ∂yϕ(x, η)−∇xη · ∇xϕ(x, η), (1.8)

where N = (−∇xη, 1)T is an (unnormalized) normal to the fluid domain. In terms of this

operator the Hamiltonian is given by

H(η, ξ) =
1
2

∫
ξG(η)[ξ] + gη2 dx, (1.9)

and the evolution equations for (η, ξ) are:

∂t




η

ξ


 =




δξH

−δηH


 , (1.10)

where δ denotes functional variation.
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1.2.5 Derivation of the linear model equations

While beautiful, equations (Equation 1.10) are rather unwieldy, especially for numerical

simulation. Therefore it is desireable to derive model equations which include most of the

central features of (Equation 1.10) while being easier to address numerically. A useful fact which

makes such a simplification possible is the analyticity of the DNO with respect to boundary

deformation. More precisely, if we set η(x) = εf(x), i.e. η is a small deformation, then we can

formally expand

G(η)[ξ] = G(εf)[ξ] =
∞∑

n=0

Gn(f)[ξ]εn. (1.11)

A large body of recent work (see (CM85; CSS97; CN00; NR01; HN05)) has been devoted to

making this expansion rigorous and indeed, under certain smoothness assumptions on f(x),

(Equation 1.11) is true in a rather strong, functional analytic, sense. With this result in mind

one can imagine approximating the full DNO by

GN (η)[ξ] :=
N∑

n=0

Gn(η)[ξ], (1.12)

and, therefore, the full Hamiltonian by

HN (η, ξ) :=
1
2

∫
ξGN (η)[ξ] + gη2 dx. (1.13)
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From this, evolution equations for (η, ξ) are derived from a calculation like (Equation 1.10).

In this work we will consider two model equations, those generated by H0 and those generated

by H1.

To compute these model equations all we need are forms for G0 and G1. At this point

we specialize to the two–dimensional problem (d = 2) and the classical periodic boundary

conditions (with period L). It has been shown in several publications (see, e.g., (CS93; NR01))

that the first two terms in the expansion of the DNO have the form:

G0[ξ] =
∞∑

p=−∞
|p| tanh(h|p|)ξ̂p =: |D| tanh(h|D|)[ξ] (1.14a)

G1(η)[ξ] = ∂x [η∂xξ]−G0 [ηG0[ξ]] . (1.14b)

While rather nonstandard, the operator G0 is simply an order–one Fourier multiplier which

behaves much like a first derivative. Furthermore, such operators fit quite naturally into a

numerical scheme based upon Fourier series which is why we advocate such a technique later.

With the formulas (Equation 1.14) we can now state our two model equations. Using simply

the zeroeth order approximation of the DNO G0 = G0 we have

∂tη = G0[ξ] (1.15a)

∂tξ = −gη, (1.15b)
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which is linear and has Hamiltonian

H0 =
1
2

∫
ξG0[ξ] + gη2 dx. (1.16)

1.2.6 The nonlinear model equations

Next, using the first order approximation of the DNO, G1 = G0 + G1 we find

∂tη = G0[ξ] + G1(η)[ξ] (1.17a)

∂tξ = −gη − 1
2

{
(∂xξ)2 − (G0[ξ])2

}
, (1.17b)

which is nonlinear (though only quadratic) and has Hamiltonian

H1 =
1
2

∫
ξG0[ξ] + ξG1(η)[ξ] + gη2 dx. (1.18)



CHAPTER 2

EXACT SOLUTION TO LINEAR EQUATIONS

2.1 Linear System of ODE’s with Constant Coefficients

To start deriving the exact solution to the linear equation (Equation 1.15) in infinite depth I

will let u = η̂(k), (the Fourier Transform of η(x)), v = ξ̂(k), and G0 = |k|. Also throughout this

thesis ∂tu = ut or u′. Finally setting the initial values of u(0) and v(0) to a and b respectively

gives us the following equations:

u′ = |k|v (2.1a)

v′ = −gu. (2.1b)

The next step is to get the two ODE’s in the form y′ = Ay where A is a 2x2 matrix and y’

and y are column vectors consisting of u and v. The equations are:




u

v




′

=




0 |k|

−g 0







u

v


 . (2.2)

We recall that to solve y′ = Ay it is sufficient to find the eigenvalues and eigenvectors of

A (BD04). The eigenvalues of A are λ = ±i
√

g|k| and the corresponding eigenvectors are

ξ = (1,±i
√

g
|k|)

T .

9
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2.2 Real Vector Solutions

The result is two linearly independent real vector solutions:

eαtb cos(βt)− eαta sin(βt) (2.3a)

eαta sin(βt) + eαtb cos(βt), (2.3b)

Where β =
√

g|k|.

Substituting in the values for α, β,a, and b gives

C1








1

0


 cos

√
g|k| t−




0
√

g
|k|


 sin

√
g|k| t





+ C2








1

0


 sin

√
g|k| t +




0
√

g
|k|


 cos

√
g|k| t





.

Now we can split this back into two equations

u(t) = C1 cos
√

g|k| t + C2 sin
√

g|k| t (2.4a)

v(t) = −C1

√
g

|k| sin
√

g|k| t + C2

√
g

|k| cos
√

g|k| t. (2.4b)
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Using our initial conditions we have

u(0) = a = C1 ⇒ C1 = a

v(0) = b = C2

√
g
|k| ⇒ C2 = b

√
|k|
g ,

So finally our exact solution to the linear system of ODEs is:

u(t) =a cos
√

g|k| t + b

√
|k|
g

sin
√

g|k| t (2.5a)

v(t) =− a

√
g

|k| sin
√

g|k| t + b cos
√

g|k| t. (2.5b)

We set ω2 = g|k| and so ω =
√

g|k|, and then ω
g =

√
g|k|
g =

√
|k|
g and ω

|k| =
√

g|k|
|k| =

√
g
|k| .

2.3 Final Exact Solution

So our exact solution can be written as

u(t) =a cosω t + b
ω

g
sinω t (2.6a)

v(t) =− a
ω

|k| sinω t + b cosω t. (2.6b)



CHAPTER 3

EULER APPROXIMATION

We now want to compare our exact solution to a numerical approximation. We use the

exact solutions (Equation 2.6):

u(t) =a cosω t + b
ω

g
sinω t (3.1a)

v(t) =− a
ω

|k| sinω t + b cosω t. (3.1b)

3.1 Euler Approximation Method

We use the Euler method to approximate the solutions. The Euler method estimates the

solution at the next time step by multiplying the ”slope” or (derivative in time) at the current

time by the time step and adding it back to the current value. For the ODE:

x′ = f(x, t), x(0) = α (3.2)

Euler’s method reads:

xn+1 = xn + (∆t)f(xn, tn), n = 0, x(0) = α (3.3)

where xn ≈ x(tn) and ∆t is the time step.

12
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In our case given the initial conditions are u(0) = a, v(0) = b, our system (Equation 2.1) is

approximated by:

un+1 = un + ∆t[|k|vn] (3.4a)

vn+1 = vn + ∆t[−gun]. (3.4b)

3.2 Euler Results

Using MATLAB to generate graphs we can compare the approximate solution to the exact

one. We compare the graphs for u and v using various values for the coefficients a (the initial

value of u), b (the initial value of v), k (the wave number), but keeping g = 1. We will also

vary T , and ∆t the size of the time step.

The first set of graphs display results with a = 1, b = 0, g = 1, k = 1, T = 3, and ∆t

varied from 1 to .1 to .01. I found that with ∆t at .1 we got a reasonable approximation, but,

as expected, ∆t at .01 was the best see, Figure 1a.

The next set of graphs I tried b = 1 and all other variables the same as before and found

similar results with the best approximation being with ∆t = .01, see Figure 1b.

The third set of graphs I kept everything the same but changed k = 2. Again, ∆t = .01

was the best approximation, but unfortunately the approximation was not as good as when k

= 1, see Figure 1c.



14

I then changed k to 10 and then to 100. With both of these as expected the approximation

was worse than with k = 1. With ∆t = .01 the error increase is apparent see Figure 2a for k

= 10, and see Figure 2b for k = 100. With k = 100 I had to reduce ∆t to .001 to get a good

approximation.

The following table lists the error found for each graph which was calculated by taking the

maximum difference between v actual and v approximated, max|v(t)− vN (t)|:

b k ∆t error
0 1 0.01 0.0987
1 1 0.01 0.1219
1 2 0.01 0.2171
1 10 0.01 1.024
1 100 0.01 13.76
1 100 0.001 0.9034

So Euler leaves something to be desired as we would like more flexibility in choosing our

k values without the cost of computing time. In our next chapter we will introduce two new

methods of approximation.
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CHAPTER 4

LEAP-FROG, RUNGE-KUTTA, AND EULER

We now want to compare our exact solution to a few more numerical approximations and

then compare the approximations to each other.

4.1 Leap-Frog

Now we consider the ”Leap-Frog” method which approximates x(t) using the two previous

time levels. We use our initial values and then approximate our first values using one step of

the Euler Method. From then on we use:

xn = xn−2 + 2(∆t)f(xn−1, tn−1) (4.1)

to approximate our solution. This should give us error of O(∆t)2 (Str05).

4.2 4th Order Runge-Kuta

Finally for an even better approximation we use 4th Order Runge-Kutta to approximate

the solution. The formula for this is:
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xn+1 = xn +
1
6
(k1 + 2 · k2 + 2 · k3 + k4); (4.2a)

k1 = ∆tf(xn), (4.2b)

k2 = ∆tf(xn +
1
2
k1), (4.2c)

k3 = ∆tf(xn +
1
2
k2), (4.2d)

k4 = ∆tf(xn + k3). (4.2e)

Runge-Kutta should give us error O(∆t)4 (GW04).

4.3 Numerical Method Results

Using MATLAB to generate graphs we can compare the exact solution to the numerical

approximations and we can also graph the error for each approximation. The error graph is

relative error. This error for the approximation (ua, va) is determined by the equation:

err(ua, va) =

√
(ue − ua)2 + (ve − va)2√

u2
e + v2

e

, (4.3)

where (ue, ve) is the exact solution.

We compare the graphs for u and v using various values for the coefficients a (the initial

value of u), b (the initial value of v), and k (the wave number), and g will remain 1. We will

also vary T, and ∆t.

The solution with a = 1, b = 1, g = 1, k = 10, T = 3, and ∆t = .01 is plotted below.
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All the approximations get better as ∆t gets smaller, however, Leap-Frog is as expected

order 2 better than Euler and Runge-Kutta is order 4 better than Euler.

4.4 Order of Error Confirmation

We now want to confirm the orders of error of each numerical method. Euler should gives

us error O(∆t), Leap-Frog should give us error of O(∆t)2,and Runge-Kutta should give us error

O(∆t)4.

4.4.1 Order of Error Solver

I used my MATLAB program ”solver” to generate estimates, the exact solution, and the

maximum relative error. I then created a program ”checkerror” which takes an array of different

∆t and gets the maximum error of the numerical method and then uses MATLAB’s built in

least squares method ”polyfit” to come up with coefficients.

The equation for the error is error = C(∆t)P , so we take the log of both sides of the

equation giving log (error) = log (C(∆t)P ), simplifying gives log (error) = log (C)+log ((∆t)P ),

simplifying further gives log (error) = log (C) + P log (∆t).

Now ”polyfit” takes an equation of the form y = mx+ b where the user provides an array of

x and y and the program gives m and b. In our equation y = log (error), x = log (∆t), m = P ,

and b = log (C). Now we have P from our equation and only need to get C by C = eb.

4.4.2 Results of Error Solver

Entering dt as [1/10, .., 1/80] and a = 1, b = 1, g = 1, k = 1, T = 3, gave the following

results:

(1.) RK4 P = 3.9967, and C = 0.1548
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(2.) Leapfrog P = 2.0020, and C = 3.3205

(3.) Euler P = 1.2043, and C = 23.4096

These numbers are close to what was expected, however, ∆t must be chosen sufficiently

small for a given k.



CHAPTER 5

COMPUTING DERIVATIVES SPECTRALLY WITH THE FAST

FOURIER TRANSFORM

We now want to add spatial dependence to our system of equations. The challenge is to

numerically compute derivatives which we will do using the Fast Fourier Transform.

5.1 Fast Fourier Transform

We consider f(x) periodic with period L = 2π and want to get an approximation of ∂xf(x)

using the FFT. Fourier analysis tells us f(x) =
∑

k

f̂ke
ikx. Differentiating with respect to x

gives ∂xf(x) =
∑

k

(ik)f̂ke
ikx. The spectral method for approximating derivatives achieves this

by approximating the f̂k, doing this multiplication and then inverting the Fourier Transform.

If we are given f(x) and we know ∂xf(x) we can test this spectral differentiation by letting it

approximate ∂xf(x) and compare it to the known derivative.

We do this in a few steps:

Step 1) Choose an N which will be the number of wavenumbers k in the FFT, e.g. 2, 4, 8,

16, or 32.

Step 2) Set up ∆x where ∆x = L/N .

Step 3) Define xj = 0 + (∆x)j = ( j
N )L where we will sample the function f(x).

Step 4) Evaluate f(x) at each xj which gives us an array of values for f(x) with N com-

ponents giving us
−→
f . We can also get

−→
fx by evaluating the known ∂xf(x) at the points.

22
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Step 5) We can now get
−→̂
f by using Matlab’s fft on our

−→
f .

Step 6) We now multiply
−→̂
f by ik to get

−→
ikf̂ .

Step 7) Now we use Matlab’s Inverse Fast Fourier Transform (ifft) to get the approximation

of fx. If we compare it to the known fx at these points we can see the error of our method.

5.2 Compare FFT to Known Derivative

Consider the function f(x) = ecos x and its derivative − sinxecos x each of which is 2π

periodic. As the table below shows the error gets very small for reasonable N:

N error
4 1.1
8 2.7× 10−2

16 1.1× 10−6

32 2.7× 10−14



CHAPTER 6

APPROXIMATION IN SPACE AND TIME

Now that we know how to approximate spatial derivatives and that 4th Order Runge-Kutta

is a good time stepping approximation, we want to approximate the wave in space and time

and look at it.

6.1 Modified Water Wave Program

With the time stepping approximation we put in a and b which were constants representing

two points in space. We then approximated what would happen to those two points as time

went on. This was done using RK4 on equation (Equation 2.1). We now extend this to our

linear water wave model for water of infinite depth:

∂tu = |D|v (6.1a)

∂tv = −gu, (6.1b)

where |D| is the zeroth order approximation of the DNO:

|D|f(x) =
∞∑

k=−∞
|k|f̂ke

ikx. (6.2)

24
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6.2 Wave as an Initial Condition

We now consider arbitrary initial conditions a(x) and b(x) meant to represent the initial

wave shape and velocity potential:

u(x, 0) = a(x) (6.3a)

v(x, 0) = b(x). (6.3b)

Now to approximate these initial data we use Fourier series:

a(x) =
∞∑

k=−∞
âke

ikx (6.4a)

b(x) =
∞∑

k=−∞
b̂ke

ikx. (6.4b)

Where âk = 1√
2π

∫∞
−∞ e−ikxa(x)dx (BD04). Thus, our initial conditions transform to:

ûk(0) = âk (6.5a)

v̂k(0) = v̂k. (6.5b)

Using the same Fourier analysis our linear water wave model becomes:
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∂tu = |D|v =⇒ ∂tûk(t) = |k|v̂k(t) (6.6a)

∂tv = −gu =⇒ ∂tv̂k(t) = −gûk(t). (6.6b)

6.3 Linear Water Wave Problem

Using our RK4 solver we evolve solutions to (Equation 6.5) and (Equation 6.6). To recover

the functions u and v we use the inverse Fourier Transform:

u(x, t) =
∞∑

k=−∞
ûk(t)eikx (6.7a)

v(x, t) =
∞∑

k=−∞
v̂k(t)eikx. (6.7b)

6.4 Approximations

So finally we have an approximation for our wave in space and time. For the matrix of

values of u and v at time values tn and spatial values xm we used Matlab’s meshz function to

give a 3-D graph with a reference plane drawn below it for u and v.

In Figure 4 we set a(x) = esin x and b(x) = ecos x, which are 2π periodic, and followed the

evolution with g = 1, L = 1, N = 64, T = 1, and ∆t = 1/10.

In Figure 5 we show a similar experiment with a(x) = sinx and b(x) = cosx.
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CHAPTER 7

LINEAR TRAVELING WATER WAVE

Now that we are able to approximate the wave in space and time we will check our approx-

imation against an exact traveling wave solution. We are hoping to see a pattern after every

period letting us know that our approximation is close to a traveling wave.

7.1 Derivation of the Exact Solution to the Traveling Wave

To get the equation for the traveling wave we start with (Equation 6.1) and (Equation 6.2)

and change to a reference frame moving uniformly with speed c. In this frame (Equation 6.1)

becomes:

∂tu− c∂xu = |D|v (7.1a)

∂tv − c∂xv = −gu, (7.1b)

7.1.1 Steady State Solution

The steady state solution where u and v are independent of time satisfy:
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−c∂xu = |D|v (7.2a)

−c∂xv = −gu. (7.2b)

We assume that our solutions are 2π periodic and knowing that:

u(x) =
∞∑

k=−∞
ûke

ikx (7.3a)

v(x) =
∞∑

k=−∞
v̂ke

ikx. (7.3b)

Plugging u and v into our steady state equation we get:

∞∑

k=−∞
−c(ik)ûke

ikx =
∞∑

k=−∞
|k|v̂ke

ikx (7.4a)

∞∑

k=−∞
−c(ik)v̂ke

ikx =
∞∑

k=−∞
−gûke

ikx. (7.4b)

7.1.2 Simplification

Factoring out like terms and removing the common summation then plugging into a system

of ODEs gives the following for all k:



31

Mk(c)




ûk

v̂k


 =



−ick −|k|

g −ick







ûk

v̂k


 =




0

0


 .

We will get a non-trivial (non-zero) solution ⇐⇒ detMk = 0. We set detMk = Λ(c, k) =

−(ck)2 + g|k|. To find a traveling wave solution we pick an integer κ and then find a speed c0

such that Λ(c0, κ) = 0. This implies that c0κ = ±
√

g|κ| and reducing further gives c0 = ±
√

g|κ|
κ .

Finally we get c0 = ±
√

g
κ where κ > 0.

7.1.3 Solving the Linear System

Now we want to solve our linear system to find our traveling wave. For k 6= κ, detMk(c0) 6= 0

so ûk = v̂k = 0. If k = κ then detM±κ(c0) = 0 and the augmented system we must solve is:



−ic0κ |κ| | 0

−g −ic0κ | 0


 ,

this is row equivalent to:



−ic0κ |κ| | 0

0 −ic0κ− g|κ|
ic0κ | 0


 . (7.5)

The solutions of this linear system are:
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û+κ = (|κ|)α
2

(7.6a)

v̂+κ = (ic0κ)
α

2
(7.6b)

û−κ = (|κ|)β
2

(7.6c)

v̂−κ = (−ic0κ)
β

2
, (7.6d)

where α ∈ C so α = ρeiθ where ρ, θ are real. To find real solutions require that α = β̄ so

that

u(x) = ûκeiκx + û−κe−iκx

=
ρ

2
eiθ|κ|eiκx +

ρ

2
e−iθ|κ|e−iκx

= ρ|κ| cos (κx + θ).

In a similar fashion

v(x) = ρc0κ sin (κx + θ).

7.1.4 Exact Solution to the Traveling Wave

Moving back to our original coordinates:
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u(x, t) = ρ|κ| cos(|κ|(x− c0t) + φ) (7.7a)

v(x, t) = ρc0κ sin(|κ|(x− c0t) + φ) (7.7b)

where c0 =
√

g|κ|
κ

7.2 Matlab Error Approximations

We can now use these to test our linear code. Using (Equation 7.7) for u and v and

plugging them into my wave function with ρ = 1, κ = 2, φ = 0, Nx = 32, Nt = 64 and g = 1

gives Figure 6a showing error for u and v. With ρ = 1, κ = 4, φ = 0, Nx = 32, Nt = 64 and

g = 1 we produce Figure 6b showing error for u and v. It is apparent that as κ increases the

error gets worse.

With ρ = 1, κ = 2, φ = 0, T = 10, Nx = 32, Nt = 628 and g = 1 we realize Figure 7a showing

error for u and v. With ρ = 1, κ = 4, φ = 0, T = 10, Nx = 32, Nt = 628 and g = 1 we find

Figure 7b showing error for u and v. It is apparent that as time increases the error also gets

worse. For larger values of κ one must choose ∆x and ∆t much smaller to see reliable results.
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CHAPTER 8

A NONLINEAR WATER WAVE MODEL

We are now in a position to consider our nonlinear water wave model:

∂tη =|D|[ξ]− ∂x[η∂xξ]− |D|[η(|D|[ξ])] (8.1a)

∂tξ =− gη − 1
2
{(∂xξ)2 − (|D|[ξ])2}. (8.1b)

We will once again consider Euler, Leap-Frog, and RK4 time-stepping methods combined

with a spectral method to compute derivatives. To deal with the nonlinear terms we make use

of the fact that on the physical side multiplication of two functions is straight forward as it is

simply pointwise multiplication.

For example to compute ∂x[η∂xξ] at the points xj we follow the steps:

1. Define −→a ∈ RN by aj = ξ(xj)

2. Use the FFT to find
−→
b = fft(−→a ); the bk approximate ξ̂k

3. Define −→c by ck = (ik)bk

4. Use the iFFT to define
−→
d = ifft(−→c ); the dj approximate (∂xξ)(xj)

5. Define −→e ∈ RN by ej = η(xj)

6. Compute
−→
f by fj = ejdj

7. Use the FFT to find −→g = fft(
−→
f ).
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8. Define
−→
h by hk = (ik)gk

9. Use the iFFT to define −→m = ifft(
−→
h ). These mj approximate ∂x[η∂xξ](xj).

Using similar steps to the above, one can compute each of the new nonlinear terms.

8.1 Nonlinear System Analysis

We now use the traveling wave solution (Equation 7.7) of the linear water wave problem

at an initial condition. We found it necessary to choose ρ rather small to avoid blow up. In

Figure 8a we display results with ρ = 0.001 for a moderate time, however, we see in Figure 8b

and Figure 8c when ρ is larger that instability eventually sets in.
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CHAPTER 9

NONLINEAR EVOLUTION OF SURFACE WATER WAVES

Our goal in this section is to demonstrate that for certain initial conditions a fully nonlinear

model is necessary to correctly model the propagation of water waves.

9.1 Gaussian Bell Curve

Consider the Gaussian function:

y =
1√
2π

e
−x2

2σ . (9.1)

Depending on the value of σ we can vary the curve from a gradual bell shape to a sharp bell

shape. We can also multiply the equation by a constant which will increase the amplitude of

the bell without affecting the rest of the initial condition. Using these variables we can observe

differences in the solutions and see where our nonlinear model is more appropriate.

In Figure 9 we display the evolution of a Gaussian with amplitude 56, σ = 1.25 × 10−4

and let time go to 100. Notice the difference between the linear and non-linear is up to 1.4

kilometers. These measurements are both unrealistic and nonphysical, however the linear code

makes an error of [1.4/20]× 100 = 7%, which can be very significant for open ocean structures.
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Figure 9. Gaussian with Linear vs. Nonlinear



CHAPTER 10

TSUNAMI EVOLUTION

10.1 Tsunami Source

Our goal is to simulate tsunami propagation and, given the models we’ve built thus far, all

we need now is appropriate initial conditions. Considerable work on this topic has been done

by Dias and Dutykh (see, e.g., (DD07)). Generally the life of a tsunami is divided into three

phases: the generation (tsunami source), the propagation and the inundation. Dias and Dutykh

give a comprehensive treatment of the mechanisms and modeling of tsunami generation and we

seek to understand the propagation of surfaces shortly after the earthquake event.

This paper deals with tsunamis created by different underwater earthquakes. We consider

three different initial waves proposed by Dias and Dutykh caused by underwater earthquakes.

These dislocations of the ocean floor are defined as strike-slip, dip-slip, and tensile. The dis-

location can be defined by three angles: the dip angle δ of the fault, the slip angle θ, and the

angle φ between the fault plane and the Burger’s vector D.

10.2 Finite Depth

Up until now we have been dealing with an ocean of infinite depth but from now on all the

codes will incorporate depth of the water. To do this we simply use the operator G0 in its finite

depth form:
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G0[ξ] =
∞∑

p=−∞
|p| tanh(h|p|)ξ̂p =: |D| tanh(h|D|)[ξ],

which gives

G1(η)[ξ] = ∂x [η∂xξ]−G0 [ηG0[ξ]] .

Now we simply replace G0[ξ] with |D| tanh(h|D|)[ξ] in our non-linear or linear equations.

For example the non-linear equation is now:

∂tη =|D| tanh(h|D|)[ξ]− ∂x[η∂xξ]− |D| tanh(h|D|)[ξ][η(|D| tanh(h|D|)[ξ])] (10.1a)

∂tξ =− gη − 1
2
{(∂xξ)2 − (|D| tanh(h|D|)[ξ])2}. (10.1b)

10.3 Tsunami Initial Wave Shape

Using the three dimensional formulas from Dias and Dutykh’s paper we extracted a two

dimensional ”slice” of the data and evolved this in our linear and non-linear codes. The first

tsunami initial condition is a result of a tensile fault and is shown in Figure 10. The second

tsunami is a result of a strike-slip fault and is depicted in Figure 11. The final and most

interesting tsunami is a result of a dip-slip fault; this is shown in Figure 12. In these graphs

the vertical component representing the wave amplitude is divided by 30.
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We can now input these tsunamis into our models and follow the linear and nonlinear

evolution.

Figure 10. Tensile Fault Tsunami Initial Condition
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Figure 11. Strike Slip Fault Tsunami Initial Condition

Figure 12. Dip-Slip Fault Tsunami Initial Condition
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10.4 Linear and Nonlinear Evolution of Tsunamis

The results of our simulation are given in Figure 13 (tensile fault), Figure 14 (strike-slip

fault), and Figure 15 (dip-slip fault). Each is plotted over a test area of 2000 km with depth

7 km. In each the full non-linear evolution is shown from both the initial view and the final

view, while we also show the final waveforms and the difference at the final time between the

linear and nonlinear propagation. In these graphs the vertical component representing the wave

amplitude is divided by 30.

We notice that the difference between the linear and nonlinear results are negligible indi-

cating that a simple linear analysis suffices to describe the initial evaluation of tsunamis.
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Figure 13. Tensile Fault Tsunami T=150
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Figure 14. Strike Slip Fault Tsunami T=150
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Figure 15. Dip-Slip Fault Tsunami T=150



SUMMARY

Our goal in this thesis was to use nonlinear models to evolve tsunamis. We started by

explaining the basics of the water wave equation. We then solved an exact solution in time.

We tested the Euler Method, the Leap-Frog Method, and the 4th Order Runge-Kutta Method

against the exact solution. Using Fast Fourier Transforms we developed a spatial approximation

and together with our time approximation methods were able to model the wave in space and

time. We tested our model on smooth waves and on traveling waves to test the error. We

then developed a nonlinear model and tested it on the Gaussian function. Finally we developed

tsunami initial conditions and observed their evolution. We found that the linear and nonlinear

evolution were virtually identical. Thus in our initial evaluation of the propagation of tsunamis

it may be sufficient to use the linear model.
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