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Introduction

Cliff Long (1931–2002) [5] was a master teacher whose office was a wonderful place to visit, for it
was crammed with a wealth of teaching devices. From his early Bug on a Band [6], to his slides and
flexible model of quadratic surfaces [3, 4], to his head of Abraham Lincoln made with a computer-
controlled milling machine [1], and, most recently, his fascination with knots [7], Cliff was always
on the lookout for new ways to illustrate mathematical concepts.

As a young faculty member I went to his office whenever I wondered how best to present some
topic in class. He had thought long and hard about everything he taught and he always was full of
ideas for how to enhance learning. Cliff was my mentor and I learned an immense amount about
teaching from him.

Of all the things in his office, my favorite was his brachistochrone. I borrowed it frequently to
use in talks whenever the Bernoullis were mentioned. The brachistochrone problem was my favorite
way to end a class on the integral calculus. It provided a lovely way to review many of the topics
we had studied. Shortly before I retired from Bowling Green State University in 1998, Cliff talked
to me about an improved design for the brachistochrone and asked for my suggestions. Little did
I know that he was making one for me. I was honored.

Parametric Equations

When introducing the topic of parametric equations, you should arrive in the classroom with your
brachistochrone under your arm. When your students arrive, take the circular disk and draw a
cycloid on the blackboard (see Figure 1). Be sure to tell the students that a cycloid is the curve
generated by a point on the circumfrence of a circle that is rolling along a straight line and that the
word derives from the Greek word for circle, kuklos. Perhaps they will have heard of epicycloids,
those circles rolling on circles, that are part of Ptolemaic astronomy. Of course you will want to
practice drawing a cycloid in advance, for it is a little tricky to get the disk to roll without slipping;
also you need to keep enough pressure on the disk — and the chalk — so that the chalk will trace
the curve. If the blackboard does not have a protruding edge that you can roll the disk on then
you will have to get several students to hold a meter stick tightly against the blackboard so that
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you will have a firm base to roll the circle on. If the blackboard slides up so that you can work at
a more convenient height, that is even better.

Figure 1. Rolling a circle to produce a cycloid

Now we are ready to derive paramentric equations for the cycloid. If you trace around the
wooden disk with chalk, you can draw a circle on top of your cycloid, as in Figure 2.

Figure 2. Finding parametric equations for the cycloid

For the paramater we use θ, the angle the circle has rolled through. We begin with θ = 0 and
the tracing point P at the origin. If the circle has radius r then when it rolls through angle θ the
circle will roll the distance OT = r θ. To get to the x-coordinate of the point P we first move right
the distance OT and then left the distance QP , i.e., r sin θ. Similarly, to obtain the y-coordinate
we move up to the center of the circle (TC), i.e., up r. and then down to P , i.e., down CQ or
r cos θ. Thus we have the parametric equations. Moving left (down) accounts for the minus sign in
the parametric equations.
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{
x = r θ − r sin θ
y = r − r cos θ

At this stage your students should plot these equations on a computer algebra system and
observe that the graph they obtain looks like what was sketched on the blackboard by the rolling
circle.

While the early history of the cycloid is unknown, Galileo named the curve (it is also called the
roulette and trochoid) and attemped to find the area under the curve is 1599. He approximated
the area by making a physical model and weighing it. His conclusion was that the area under one
arch of the cycloid was about three times the area of the generating circle. (Although I never have,
one could repeat Galileo’s experiment in class by constructing an accurate arch of a cycloid and
weighing it — but you will need a chemist to loan you an accurate scale.) In 1643, Roberval proved
Galileo’s conjecture. Tangents to the curve were constructed later in the decade by Descartes,
Fermat and Roberval, presumably independently. In 1658, Pascal posed a number of problems
related to the cycloid. The most interesting of these, the rectification, or arc length, of the curve,
was solved by Christopher Wren [16]. In 1686, Leibniz found a cartesian equation for the curve,
viz.,

y =
√

2x − xx +
∫

dx√
2x − xx

.

Bernoulli’s New Year’s Day Problem

On January 29, 1696/7, just nine months after Newton left the Lucasian Professorship at Cambridge
to take up “ye Kings business” at the Mint in London, he received a letter from France containing
a fly-sheet printed at Groningen and dated January 1, 1967. It was addressed

To the sharpest mathematicians now flourishing throughout the world, greetings from
Johann Bernoulli, Professor of Mathematics. [9]

You might wonder why Johann Bernoulli was teaching in the Netherlands. This was because
his older brother, Jacob, held the professorship of mathematics at the university in their native
town of Basel; the newly married Johann was forced to look elsewhere. Through the help of Liebniz
and L’Hospital he obtained a position at the university in Groningen. Bernoulli’s stated aim in
proposing this problem sounds admirable:

We are well assured that there is scarcely anything more calculated to rouse noble minds
to attempt work conductive to the increase of knowledge than the setting of problems
at once difficult and useful, by the solving of which they may attain to personal fame
as it were by a specially unique way, and raise for themselves enduring monuments
with posterity. For this reason, I . . . propose to the most eminent analysts of this age,
some problem, by means of which, as though by a touchstone, they might test their
own methods, apply their powers, and share with me anything they discovered, in order
that each might thereupon receive his due meed of credit when I publically announced
the fact. [9]

Bernoulli’s new year’s present to the mathematical world was a great gift, a difficult problem
that would enrich the field:
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To determine the curved line joining two given points, situated at different distances
from the horizontal and not in the same vertical line, along which a mobile body, running
down by its own weight and starting to move from the upper point, will descend most
quickly to the lowest point. [9]

This is the brachistochrone problem. The word was coined by Johann Bernoulli from the Greek
words ‘brachistos’ meaning shortest and ‘chronos’ meaning time. But the problem was not new.
In 1638, Galileo attacked it in his last work, Discorsi e dimostrazioni matematiche, intorno à due
nuoue scienze [Discourses and Mathematical Demonstrations Concerning Two New Sciences], but
he was unable to solve it. Galileo was only able to prove that a circular arc provided a quicker
descent than a straight line. Bernoulli noted this in his fly-sheet when he wrote that the solution
to the brachistochrone problem was not a straight line, but a curve well known to geometers.

Earlier, in June 1696, Johann Bernoulli published a paper in Germany’s first scientific periodical,
the Acta eruditorum, wherein he attempted to show that the calculus was necessary and sufficient
to fill the gaps in classical geometry. At the end of the paper the brachistochrone problem was
posed as a challenge, setting a deadline in six months, but Bernoulli received no correct solutions.
He had received a letter from Leibniz indicating that “The problem attacked me like the apple did
Eve in Paradise.” [13] and indicating that he had solved it in one evening. In fact, he had only
found the differential equation describing the curve, but had not recognized the curve as an inverted
cycloid. Bernoulli and Leibniz interpreted Newton’s six month silence to mean the problem had
baffled him — indeed he had not seen it. To demonstrate the superiority of their methods, Leibniz
suggested the deadline be extended to Easter and that the problem be distributed more widely. So
Bernoulli added a second problem, had a broadside published, and made sure it circulated widely.

The brachistochrone problem was a difficult one. Pierre Varignon and the Marquis de L’Hospital,
in France, and John Wallis and Daivid Gregory, in England, were all stumped. But Newton was
not. Thirty years later Newton’s niece Catherine Barton Conduitt recalled,

When the problem in 1697 was sent by Bernoulli — Sr. I. N. was in the midst of the
hurry of the great recoinage [and] did not come home till four from the Tower very much
tired, but did not sleep till he had solved it wch was by 4 in the morning. [14, 15, pp.
582–3 and , 72–73 respectively]

The next day Newton sent his solution to his old Cambridge friend Charles Montague, who was
then President of the Royal Society. He published Newton’s work anonymously in the February
issue of the Transactions of the Royal Society of London. The trap that Bernoulli and Leibniz had
set for Newton failed to snare its game.

Figure 3. Newton’s Construction

Newton provided no justification for his solution, but simply showed how to construct the
necessary cycloid [9, 15] [p. 22 and 75 respectively]. He simply drew an arbitrary inverted cycloid
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with its starting point at A, the higher of the two points, and then drew a line between the two
given points, A and B. This line intersects the arbitrary cycloid at Q. Then he found the ratio
of the line segment from the starting point to the final point to the line segment from the starting
point to the initial cycloid, i.e., AB/AQ. He used this ratio to expand the radius of the initial circle
to produce the circle which would generate the desired cycloid.

Derek T. Whiteside, who has published an extremely valuable edition of The Mathematical
Papers of Isaac Newton, claims that the fact that it took Newton twelve hours to solve these
problems indicates that his mathematics was rusty from nine months disuse. It also shows that
the gradual decline in Newton’s mathematical ability had set in. However, his solution of the
brachistochrone problem is one piece of counterevidence to the myth that Newton’s old age was
mathematically barren [15, pp. xii, 3].

Immediately on receiving the solution of the anonymous Englishman via Basnage de Beauval,
Bernoulli wrote Leibniz that he was “firmly confident” that the author was Newton. On the author-
ship of the problem Leibniz was more cautious, admitting only that the solution was suspiciously
Newtonian. Several months later Bernoulli wrote de Beauval that “we know indubitably that the
author is the celebrated Mr. Newton; and, besides, it were enough to understand so by this sample,
ex ungue Leonem.” Within a few weeks this shrewd guess was common knowledge across Europe.
The phrase goes back to Plutarch and Lucian, who allude to the ability of the sculptor Phidias to
determine the size of a lion given only its severed paw.

Not having succeeded in trapping Newton, Bernoulli lost interest, leaving it to Leibniz to publish
the solutions in the May 1697, Acta (pp. 201–224). These included Johann’s own solution, one by
his older brother Jakob, one by L’Hospital (probably produced with the help of Johann Bernoulli),
one by Tschirnhaus, and a reprint — seven lines in all — of Newton’s. This time Newton was not
anonymous, for Leibniz had mentioned him in his introductory note. Leibniz was so embarrassed
by the whole thing that he wrote the Royal Society indicating that he was not the author of the
challenge problems. Technically, this was true, but he had contrived with Bernoulli to embarrass
Newton.

Within a few years there were solutions by John Craige, David Gregory, Richard Sault and
Fatio de Duillier. In 1704 Charles Hayes, in his widely read Treatise on Fluxions, presented it as a
mere worked example in this textbook. As often happens, a difficult problem, once cleverly solved,
comes within the grasp of many.

Perhaps the most important of all of these solutions is that by Jakob Bernoulli. While somewhat
ponderous, it led to a new field of mathematics, the calculus of variations, a branch of analysis
where the variables are not numbers but functions.

The clever elementary solution of Johann Bernoulli is the one that I like to present at the end
of a course on the integral calculus, for it provides both a wonderful story and a great review.
Because of space considerations, it will not be repeated here. You can find it in many places, e.g.,
[11]. Translations of the solutions of the Bernoulli brothers can be found in [12].

Building Your Brachistochrone

One of my students, Zachary Seidel, had a brachistochrone sliding board as a young child. His
father had studied mathematics as an undergraduate and decided that his son should have the
quickest slide in the neighborhood. Such a slide is probably too big for your classroom, so the
model designed by Cliff Long will be described.

You will need a sheet of 3/4 inch plywood that measures roughly 30 by 14 in. First cut off
a strip off the long edge that is about 1 1/4 inches wide; its use will be described momentarily.
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From the center of the long side, cut out a circle of radius 4.5 in. Drill a hole in the center and
insert a 1/4 inch dowel that sticks up far enough to provide a nice handle. Near the circumfrence
of the disk drill another hole that will hold a small piece of chalk (ideally the chalk would be at the
circumference, but makes the construction of our bachistochrone harder). The distance from the
center of this hole to the circumference of the disk should be slightly more than the radius of the
chalk. This is so the chalk will not fall out. You should also drill another hole in the disk at about
half the radius so the chalk can be moved there later so that you can draw a curtate cycloid.

Figure 4. The Finished Brachistochrone

Figure 5. Details of construction.

Use this disk and chalk to trace out one arch of the cycloid on the sheet of plywood. Start with
the chalk about 2 inches from the short edge and on the same side where you cut out the disk.
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Now cut on this chalk line and you will have a cycloid. Use your router to cut out a groove on the
edge of the plywood so you will have a track for a marble to run down.

The fun part of this model is a straight line track for another marble to run down. It will be
used to demonstrate clearly that the straight line is not the quickest path. To do this, you will
use the piece of plywood that you cut off earlier. Cut a groove on one side for the marble. Cut
a slot along the middle of this board starting about one inch from the end and about 12 inches
long. The slot should be wide enough so that it will slide over a set screw. The ideas is that you
want to adjust where the straight line track ends. At one extreme it should be able to go almost
horizontally across the whole arch of the cycloid; on the other you want to be able to adjust it so
that the straight line track ends at the low point on the inverted cycloid, and perhaps even before
that.

Next you want to cut out a semi-elliptical piece on the yet untouched straight base. With
a screw, and washer used as a spacer, this will provide a toggle stand for your brachistochrone.
Finally, you need a place to store several marbles (three are suggested in case you lose some of your
marbles in class). See Figure 5.

Using your Brachistochrone in Class

After you have drawn a cycloid on the blackboard, and perhaps even before you have derived its
equation, you should hold your brachistochrone up to the blackboard to show the students that the
curve you just drew is the same curve as on your brachistochrone. Now you can explain Johann
Bernoulli’s problem and let them test the cycloid solution against the straight line solution.

Figure 6. Brachistochrone = Cycloid.

Here is an opportunity to get your students involved. Invite several of them to the front of
the classroom and have them adjust the straight line chute so that it ends at the low point of the
inverted cycloid on the brachistochrone. Have one of them get out two marbles and hold them with
one hand so that one marble is on the brachistochrone track and the other is on the straight line
track. By using one hand it is easier to release the marbles simultaneously. Some chaos will result
when the marbles go flying off the end of the tracks and across the room. Probably some students
will be disbelievers — when one first encounters this demonstration it is hard to believe that the
cycloid track is quicker than the straight line track — and want to try this themselves. This is
good; get everyone involved.
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Next one can adjust the straight line to direct one marble to another point. Pick a point that
is above the low point of the brachistochrone. This time, to the astonishment of the students, the
marble race is even more unfair. Travel along the brachistochrone is much quicker. Students are
perplexed that the quickest way to get from A to B is to dip below B and then coast back up to
it. They will ask you why this happens. What they do not realize is that they are asking to see
the proof that the brachistochrone really is the quickest path. This shows the motivational power
of interesting historical examples combined with a tactile demonstration of the result.

I have met mathematicians who believed that to get from A to B on the quickest path, that
one should draw a cycloid that begins at A and has its low point at B. To see that this belief is
incorrect, go back and examine Newton’s picture again (Figure 3). It will soon be clear that it is
rarely the case that B is at the bottom of the cycloid.

The brachistochrone model can be used to demonstrate another interesting property of the
cycloid. The curve is isochronous, i.e., no matter where one starts on the curve the time it takes
to reach the low point is the same (see [?] for a proof). To illustrate this, have a student hold
a marble in each hand, one on each side of the minimum point on the cycloid, but at different
distances from the midpoint, and then release them simultaneously. They will collide at the low
point of the cycloid. To confirm this the observer needs to be directly in front of the model and to
focus on the minimum point of the cycloid (a mark on the model will help locate this point for the
observer). Your students will want to repeat this multiple times from different starting positions
thereby giving all a chance to observe up close.

The ordinary pendulum is not isochronous; the period T depends upon both the length L
and the angle of oscillation θ. This provides an interesting real world example of a multivariable
function, which is due to Daniel Bernoulli in 1749.

T (l, θ) = 2π

√
L

g
(1 +

12

22
sin2 θ

2
+

12 · 32

22 · 42
sin4 θ

2
+ · · ·)

When the angle of oscillation is small then all of the terms of the series involving the sine can
be ignored. This provides yet another point in the curriculum to bring in this circle of ideas.

Christiaan Huygens, the foremost mathematical physicist in the generation before Newton, took
advantage of this property of the cycloid to design an accurate pendulum clock (Figure 7). But he
needed one more mathematical property of the cyclid: the evolute of a cycloid is another cycloid
of the same size.

He hung the bob of his pendulum on a thread that swung between cycloidal cheeks. The cheeks
prevented the bob from swinging in a circular arc like in a regular pendulum. When the bob moved
to the side it wound around the cycloidal cheeks and was pulled up slightly. He showed that the
curve of the bob was a cycloid. See [10] for the mathematical details.

Huygens published this work in his Horologium oscillatorium of 1673; you can read how he
constructed a cycloid (he had a clever device for avoiding slippage) and designed his clock [2]. A
model of his clock can be seen in the Borehaave, a wonderful science museum in Leiden in the
Netherlands. Unfortunately, as one might suspect, the accuracy of Huygens’ clock was killed by
friction. This illustrates the old adage: In theory, theory and practice are the same, but in practice,
theory and practice are not the same.

Trains and Epicycloids

A fun question to pose to students is this: What point of a railroad train is always moving back-
wards? It will probably take some prompting to get them to realize that the correct answer is the
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bottom of each wheel, the flange, which is the part of the wheel below the top of the rail and which
keeps the train on the track. This will give us another opportunity to use our device, but we will
need another piece to attach to our cycloid drawer, a piece of wood several inches longer than the
radius of our disk. It should have a hole which goes over the peg at the center of the disk, another
peg to go in the hole where the chalk went while drawing the cycloid, and another hole near the
end for another piece of chalk. This arrangement forces the board to turn as the disk turns. If the
chalk is at distance d > r from the center of the circle then it produce a prolate cycloid. When you
use this device to draw a prolate cycloid in class, your students will literally be able to see at the
bottom of the curve is moving backwards.

The student who understands how the parametric equations for the ordinary cycloid were
obtained will have no trouble finding the equations for a prolate cycloid:

{
x = r θ − d sin θ
y = r − d cos θ

If we compute the derivative in the x-direction we obtain

dy/dθ = r − d cos θ.

If θ is (near) an even multiple of π then this derivative is negative. More precisely,
When d is arbitrary the curve is called a trochoid, when d > r it is a prolate cycloid and when

d < r it is a curtate cycloid. Curtate cycloids are used by some violin makers for the back arches
of some instruments, and they resemble those found in some of the great Cremonese instruments
of the early 18th century, such as those by Stradivari [8].

Figure 7. The Pendulum Clock of Christiaan Huygens
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Conclusion

One does not have to prove everything one talks about. We mathematicians need to start talking
about mathematics. There are so many interesting things in mathematics that will captivate
students. Once they are interested they will be motivated to get a deeper understanding of that
mathematics. They will seek out the proofs on their own.

We have seen the essential ingredients of good teaching combined in one problem. We have a
problem with a fascinating history with a multitude of important names that our students should
know. The mathematics is tractable to undergraduates. The ideas can be used at several places in
the curriculum and this spiral approach enhances learning. Finally one has a nice classroom device.
For all of this, I thank Cliff Long.

The author would like to thank Andy Long of Northern Kentucky University and Tom Hern of
Bowling Green State University for helpful commments on a draft of this paper and colleague LTC
Michael Huber for “lending a hand” in the preparation of this paper.
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