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In plane view: an exercise in visualization

by BRIAN J. WINKEL1

Department of Mathematical Science, United States Military Academy, West Point,
NY 10996, USA

(Received 11 September 1995)

We offer a problem in visualization which uses multivariable calculus
concepts. The problem is essentially to describe (mathematically) what we
can see on one mountain while sitting on an adjacent mountain. We present how
our students, working in groups, attack the problem and the issues which
surround the solution strategies produced. We have successfully used this
problem for a number of years in our courses, devoting several class periods
and about 2-3 weeks outside of class to student development of a solution
strategy. The problem serves to develop visualization skills, verbalization of
mathematical concepts, and implementation of problem-solving notions in
mathematics including gradients, optimization, integration, surface area, and
programming.

1. Introduction
For the past five years we taught in a rich environment as part of a team of

faculty teaching in an Integrated First-Year Curriculum in Science, Engineering,
and Mathematics (IFYCSEM). In IFYCSEM the technical courses (calculus,
mechanics, electricity and magnetism, chemistry, statics, computer programming,
graphics, and design) are all put together in three 12 credit quarter courses [1].
This course is team taught to a cohort of 90 entering students by a group of eight
faculty. The faculty team for 1994-95 consisted of two from mathematics, one
from physics, two from chemistry, one from electrical engineering, one from
computer science, and one from mechanical engineering. Teaching in this
environment gives an opportunity to relate material and a degree of freedom not
offered in a traditional calculus course. Opportunity and freedom come from team
teaching and access to laboratory time for mathematics, coupled with a knowledge
of what students have seen and are doing in other areas, physics for example. This
paper deals specifically with linking programming, visualization and mathematics.

Most of the contact hours in this class were conducted in a computer lab of 30
NeXT workstations, each equipped with Mathematica. Students have access to
this technology for all their work—class, projects, homework, lab write-ups and
exams. In IFYCSEM we emphasize cooperative learning and almost all class
meetings have a strong component of group work and many assignments are for
groups, perhaps with one submission from the group.

In IFYCSEM we used Mathematica early in the course, both as a principle tool
for mathematics and as the introductory programming environment. Thus we are

1 This work was carried out at the author's previous institution: Department of
Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA.
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600 B. Jf. Winkel

able to build on this expertise in a number of projects and problems throughout
the course. In this paper we describe an application of mathematics and a use of
Mathematica in visualization. Visualization is emerging as an important aspect of
teaching and learning mathematics [2], especially in light of using technology for
graphing and spatial manipulation.

2. The visualization problem
We introduce the following problem in class. We usually begin the problem in

a room in which there are no computers so the students will do a bit of
visualization of their own without turning to computers to 'crunch' functions
and numbers.

For the function

f(x,y)=-
20)

suppose your eye is precisely on the surface z = f(x, y) (see Figure 1) at the
point (2-8,0-5,/(2-8,0-5)). You look to the left, i.e. in the direction (roughly)
(—1,0,0). You see a mountain before you.

(a) Determine the point on the mountain which you can see which is nearest to
you.

(b) Describe as best you can the points on the mountain which you can see
from the point (2-8,0-5,/(2-8,0-5)).

(c) Determine the amount of surface area on the mountain which you can see
from the point (2-8,0-5,/[2-8,0-5]).

Peak we are
viewing

Eye ball at this point
Point (2.8,0.5, f(2.8,0.5))

Surface z = f(x,y):
(x3 - 3x + 4)

(x4 + 5y4 + 20)

Figure 1. Surface z =f{x,y) = (x3 - 3x + 4)/(x+ + 5 / + 20).
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An exercise in visualization 601

That is it. We give the students the statement of the problem with the figure
and say, 'Go to it!'. Since they are always working in groups they turn to their
neighbour and start buzzing. We circulate around the class, listening in on group
discussion and responding to individual queries. From time to time, we summarize
group progress for the class and ask groups to make progress reports during class
time.

3. Some background observations
We spend three days of class time on this problem—usually over a two-week

period. One year we spent four consecutive class periods on the problem. We
require students to submit individual write-ups two and one-half weeks after the
problem has been introduced in class. While students work in small groups both in
and out of class each student is responsible for writing up an individual report. At
the one and one-half week mark we require individuals to submit a one page
progress report indicating who they are working with, what ideas are emerging,
and what progress they are making.

When we first assigned this problem several years ago we did not assign part
(c), nor did we really have an in-hand solution to (a) or (b). We told the students
this and some were quite concerned that we would assign a problem to which we
did not know the answer. 'Life is like that in the real world', we say, i.e. your boss
will not know the answer to a question she asks you, but she will have some idea as
to whether or not it is a reasonable question and if you can contribute to its
resolution. Moreover, she will be there to assist you, advise you, respond to your
ideas, and to offer tools, equipment, and other resources should you need them.
'Welcome to the real world!'

Not only did we not have a solid approach to the problem before going to the
students with it, but we did not have the many rich ideas and varied approaches
which have emerged from students' approaches over the several times we have
assigned this problem! We believe these approaches illustrate the breadth of
student initiative and creativity and we share them with the reader in the hopes
that the reader will try this problem or some variation with students.

Some samples from progress reports indicate the directness of students in
sharing their feelings and observations:

Initially in the class I had no idea of how to go about solving this problem.
The problem seemed beyond my knowledge. With a little discussion among my
friends in the class and help outside of class I now believe that I actually may be
able to understand what is going on and solve the problems.

When I first saw the project it looked nearly impossible. That view changed
rapidly as I began to chat with my colleagues. The ideas began to flow and the
problem quickly became manageable.

I have no huge progress to report on this subject, but I do have several
ideas.

The first idea that we came up with is the idea that if we could make the
second hillside, the one we see, a line in two space, a line perpendicular to that
line running through our position point, would be the shortest distance. The
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602 B. J. Winkel

problem with this is that one, we are in three space not two, and two the
perpendicular lines through the hill and our point may not be actually visible to
us. Even though this idea was not usable it led to other good ideas.

When this problem was first assigned, I approached it with some trepida-
tion. It is scary when you are faced with a problem that even your professor has
never solved. After talking with fellow students, I have seen that this problem
will not be as evil as it first seemed.

The best title on the final report was 'Making Molehills Out of Mountains'. The
best observation by a student was, 'These failed ideas often led to better ideas in
the long run and were usually not wasted time'.

4. What do students do?
In general, the class does a wonderful job on this problem. Indeed, they do a

good job on most problems in which cooperative learning is used for no one
student is forced to battle a tough idea alone. There is always another point of view
sitting in the next seat with a colleague. Individuals and small groups do some very
unique things with the problem. We have outlined these approaches below. There
were a good many different approaches and while some consensus approaches
emerged there were even different variations on these.

We make some general observations to the students after the mid-problem
progress report has been submitted. We do this through email to the class. We use
email to communicate on a routine basis in IFYCSEM.

• You should restate the problem or at least not just jump into the problem
without some introduction and identification of the issues and the function.

• Be careful to define your terms and be sure you have uniqueness, e.g., do not
just say 'the plane' say 'the tangent plane at the point (x,y,z)'.

• Identify and give credit to those with whom you work.

In the discussions of the class the notion of not seeing 'below' the tangent plane at
the 'eye-point' emerges quickly and then issues such as determining where the
tangent plane intersects the surface follow. While working with a group it
becomes apparent that not all approaches are linear, i.e. (a) then (b) then (c)
etc. Students jump about in the problem, asking questions which sometime
address the part they think they are considering, but often lead to looking at
issues related to another part of the problem. Indeed, in one section a student
immediately offered to determine the (x, y) region of the viewed mountain cut off
by the tangent plane and use Mathematica's I m p l i c i t P l o t to plot the relation
T a n g e n t P l a n e [ x , y ] - f [ x , y ] = = 0 . Then plot this implicit plot over the
contour plot of the function z =f(x,y).

We now address the main themes of the problem and offer student approaches.

5. Find the closest visible point
Students offer a number of different ideas and approaches in trying to solve

(a) Determine the point on the mountain which you can see which is nearest to
you.

A number of students argue that the points of intersection of the tangent plane
at the eye-point and the surface must contain the 'nearest point' since the
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An exercise in visualization 603

0 . 5

Figure 2. Merged plot of points of intersection of the tangent plane at the eye-point with
the mountain being viewed and a contour plot of the function z =f(x,y).

mountain slopes away above this tangent plane. But it is not clear that this is so and
several students offer 'hand-waving' sketches to counter this notion. Indeed, later
they find out the tangent plane does contain the nearest point, namely the eye-
point itself(!) and some have a tough time getting their algorithm to not converge
back to the eye-point.

Using a simple loop, actually double loop, one student offered a mesh of points
which provide the x and y limits of a reasonable region of visibility and then used
an even finer mesh inside this one (say 0005) and tested all points inside the
boundary to find the closest point to be (0-241, 0-47, 0-162) at a distance of 2-559
units.

Two bright students decided to first define the region of visibility (interior
region in the (x,y)-plane of the projection onto the (x^-plane of the intersection
of the tangent plane at the eye-point and the surface) by estimating a collection of
points on the intersection through clicking on the above implicit plot in Figure 2.
They proceeded to fit a polynomial curve, * = g(y), to the sampled data points,
knowing they could not solve explicitly for x or y. (Mathematica will permit the
user to click on the figure and with a hairline obtain the coordinates of the point at
which the cursor is located.) Then they minimized the distance function from the
eye point to the surface, i.e. d(x,y) = [ (*- 2-8)2 + (f{x,y) -/(2-8,0-5))2]V2.
Here the * = g{y) function fitted to the boundary data was substituted into
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604 B. jf. Winkel

d(x,y) making (d(x,y) = d(g(y),y) a function of one variable which was easy to
minimize. Again this presumes the nearest point occurs at the intersection of the
surface and the tangent plane. One of these students then went on to state it best
when he said, 'A better approach was decided as working backwards and find all
the visible points on the second mountain. Then, use the FindMinimum
command in Mathematica to find the shortest value of the distance function,
d(x,y), over this range'.

Another student, after determining the equation of the tangent plane, p(x, y),
defined the distance function

d(*,y) = If [f(x,y) > p(x,y), ((* - 2-8)2 + (f(x,y) -/(2-8,0-5))2)1/2,15],

the latter to keep the distance high. He then applied Mathematica's
FindMinimum command to d(*,y).

A weaker, but persevering student, found /(ar,y)-tangentplane (x,y) and went
through various y values 0-41 and 0-425 in increments of 0-001 (after seeing the
contour plot of the slice on the mountain) printing out the x value of the
intersection and the distance to the eye point in one table. Then he selected the
point with the smallest distance (0-244, 0-417, 0-162 86) which was 2-5573 units
away from eye point.

Several students suggested that the nearest point on the mountain to our eye
would be one for which a line from the eye to the point is perpendicular to the
surface—but no justification or apparent use of this idea was pursued.

All seemed to be getting something like (0-244, 0-4, 0-163) as the nearest point
on the opposite mountain with a distance from eye-point to nearest point of 2-558
units.

6. Describe what you can see on the other mountain
In attempting to describe what you can see on the other mountain, most

students went with determining a boundary of region you could see. This meant
determining the points of intersection of the surface with the tangent plane. These
points were not on a closed form relation or function, but consisted of a number of
points obtained by numerically solving for y coordinates when an x coordinate was
offered.

As to what one could see at the 'top' of the mountain. There were a number of
ideas, including an initial interest in finding the highest point on the other peak.
To this approach a number of students immediately said, 'But you probably can't
see that top point'.

Students would attempt to get a window on what we can see by swinging out
from the centre until the surface is no longer 'hit' by our line of vision, the same
would apply to swinging up to get a top view limit. But, in practice, these ideas
were never implemented.

One idea that did work was, in their own words, 'Place a stick end where your
eye is and let it fall until it lays on the surface of the viewed mountain. You cannot
see beyond that point of contact in that line of view'. This proved to be a very
powerful image for students and it led to the following idea:

The line (L) from our eye-point to the other mountain of the surface which just
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An exercise in visualization 605

Normal to
the surface Point P

Eye-point

z=f(x,y)

Figure 3. Plot showing the line connecting eye-point to arbitrary, but visible point, P, on
second mountain and the normal to the point P.

lies on the other surface will touch the other surface at a point at which the
normal (N) to the surface at that point and L are perpendicular, i.e. the dot
products of the directions of N and of L must be 0 (see Figure 3).

or

A point on the second mountain is visible if the dot product with the vector
from the eye to this point, L, with the normal vector to the surface at this point,
N, is greater than zero, i.e. the angle between the vectors is less than 90°. Here
it is noted that the z value of the points in question on the surface have to be
greater than the z value of the point with the same (*, y) coordinates on the
tangent plane at the eye-point, i.e. the point is visible if it is also above this
plane.

Moreover, one student made an array of all visible points over a fine mesh within
such defined boundaries and then checked the distance for each of these visible
points with a nice Do loop looking for minimums.

Another clever idea was to define the visible point function, v(x,y). After
determining the equation of the tangent plane, p(x,y), define the visible point
function v(x,y) = If [f(x,y) > p(x,y)J(x,y),f (2-8,0-5)]

6.1. Ideas on tangent plane boundary
The following were some of the ideas to attempt to characterize the boundary

created at the intersection of the tangent plane to the eye point and the opposite
surface:

1. I m p l i c i t P l o t intersection of tangent plane at eye-point and the
surface.

2. Numerically solve the intersection of tangent plane and surface.
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606 B. J. Winkel

3. Fit a curve through the numerical set of points to outline the intersection of
tangent plane and surface.

One student stated,'... that the parametric representation of the tangent plane was
less useful than the Cartesian one'.

6.2. Ideas on top ridge boundary
In attempts to determine the points along the top of the opposite mountain

which serve as the boundary between those points we can see on the 'front' and
those we cannot see on the 'top' or 'back' students came up with the following
approach.

1. Consider points (x,y,f(x,y)) on the surface which are (a) on tangent plane
and (b) where the dot product of normal to surface and vector connecting
that point and the eye point is zero—see Figure 3.

2. Take the above points (their projection into the x—y plane) from (1) and fit
an eighth (or degree of choice) degree polynomial to them and use this as
part of the x-y boundary of visible points.

7. Determine the amount of surface area on the mountain you can see
A number of very different approaches emerged and we list them here.

1. Visualize two cones—one using the smaller side (due to the tilt) of the
mountain and the other using the larger side. Obtain the average of these
surface areas and then determine the angle out of the full 360 degrees which
is subtended by the extreme (left and right) tangent lines from the eye point.

2. Offer a mesh of points which provide the x and y limits of the region of
visibility and then integrate the element of surface area over each square in
the mesh to get approximate surface area of 2-232 square units.

3. Confine the region of visibility in the x—y plane by approximations, e.g. by
parts of circle and a line and then integrate the surface area.

4. After fitting polynomial curves to data of the ridge points (found in previous
section) and the intersection of the tangent plane with the opposite
mountain the surface area element is integrated over the region as a double
integral.

4. Approximate the region over which we should integrate by semicircle and
two straight lines.

6. Write a loop to integrate for fixed x from the lowest visible point to the
highest visible point using a mesh and a test to see if the element of surface
area should be accumulated.

7. Slice vertically across the range and add the 'arc length times the change in
x' (actually the little elements of surface area)—checking to be sure each
point which would contribute was visible.

8. Estimate the average slope of the surface (did not say how) and over the
mesh placed on the visible region multiply the area of the little elements of
x—y squares by the slope. Then add up the surface area estimate for each
little rectangle.

9. Break the underlying x-y region into triangular regions, but one needs to
then integrate the elements of surface area to get ther estimate of surface
area above these elements.
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An exercise in visualization 607

10. Create a simple function newf (x,y) = If [f{x,y) > plane (x,y), f(x,y),
—0-2] to 'grab' all the points which were above the tangent plane and on
the surface and use it in numerical estimates of surface area.

8. Conclusions
This project poses a real challenge to students. Students used calculus,

gradients, geometry, tangent planes, equation solving, Mathematica programming,
and numerical methods for determining points on the intersection of the plane and
surface. I m p l i c i t P l o t proved helpful as well for visualization. In solving this
problem students used known concepts in new contexts and in some cases
discovered new concepts. They worked through a complex process to assemble a
solution to the visual problem before them.

We highly recommend this project to enliven your class, to engage the
students, to challenge visualization skills, and to give students an opportunity to
work in teams to solve a complex problem.

Source and acknowledgement
A Mathematica notebook and an ASCII version of this problem, with solution

and comments is available (under title OverView), as a part of a larger National
Science Foundation project effort, 'Development Site for Complex, Technology-
Based Problems in Calculus', NSF Grant DUE-9352849. This notebook along
with other problem sources material developed with support of the grant is
available on the World Wide Web under the address: http://www.rose-hulman.
edu/Class/CalculusProbs. Web site preparation was done by Dr Aaron Klebanoff,
a bright, young colleague at Rose-Hulman Institute of Technology.
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