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year in which it was drawn? (The actual year of publication is the same as that of the

King James or Authorised Version of the bible.)
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A complex technology-based problem in visualization and computation for
students in calculus is presented. Strategies are shown for its solution and the
opportunities for students to put together sequences of concepts and skills to
build for success are highlighted. The problem itself involves placing an object
under water in order to actually see more of the object due to the refraction
of light.

1. Introduction

A number of years ago we developed a set of complex, technology-based problems in
calculus with applications in science and engineering. A number of our efforts can
be found in the form of completely posed and worked out problems at http://
www.rose–hulman.edu/Class/CalculusProbs/[1].y We have shared our enthusiasm
for these problems [2] in which there are a variety of approaches to the problem, but
they usually demand bringing together a number of concepts and skills, hence
complex; moreover, technology is a very helpful, often necessary tool.

We are always on the lookout for such problems, for scenarios in which to
develop them, and we continue to use them in our teaching [4]. In [3] we offer a
problem in visualization which uses multivariable calculus concepts. The problem is
essentially to describe (mathematically) what we can see on one mountain while
sitting on an adjacent mountain. See Figure 1. This leads to a complex problem in
which technology is necessary to offer a full analysis.

In this note we consider an illustration of this kind of problem in optics. We take
the reader through the presentation of the problem, strategies for doing the problem,
and discussions of pedagogical and technological issues.

2. Seeing around a circular disc under water

We all have some experience with seeing objects which are under water from above
the surface of the water. They are not where they appear to be and we find this out by
reaching to where we see them, only to find them not there! We consider the situation
of looking directly down at a sphere while our eye is above the surface of the water
and the sphere is under the water. Our eye is directly above the North Pole of the
sphere and we are interested in seeing exactly how much of the sphere we can see
when it is under water and comparing that to how much of the sphere we can see
when there is no water. Perhaps a better way to introduce students to this problem is
to ask them if they can see more, less, or the same amount of the sphere’s surface in
the two situations. We can develop some conjectures in class and small group
discussions and then proceed to analysis to determine just what portion of the
surface of the sphere we can see in the two situations.

We first consider this situation in one less dimension, i.e. we consider the setup
(see Figure 2) in which our eye is directly above the centre of a circular disc (referred
to as circle) and in the plane of the circle which sits perpendicular to and on the
bottom of a tank of water. We seek to compare the two situations – with and without

yThe production of this material was supported by the National Science Foundation under
Division of Undergraduate Education grant DUE-9352849: Development Site for Complex,
Technology-Based Problems in Calculus with Applications in Science and Engineering.
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water – and determine how much of the circumference of the circle we can see in each

situation. To move to the spherical situation we rotate our circumference elements

about the vertical diameter of the circle to compute the visible surface areas and

compare. Thus we settle in, for now, to the problem of the vertical circle.

x
−5

0

5

y

−0.1
0

0.1

0.2

z=f(x,y)

−5

0

5
x

(x3 − 3x + 4)

(x4 + 5y4 + 20)
Surface z = f(x,y) =

Peak we are
viewing

Eye ball at this point.
Point (2.8, 0.5, f(2.8, 0.5))

Figure 1. Surface z¼ f(x, y)¼ (x3� 3xþ 4)/(x4þ 5y4þ 20).

Figure 2. Depiction of a circular disc (circle) sitting vertically on the bottom of a pool of
water with our eye directly over the plane of the circle. P is the point on the surface of the
water at which the light refracts and v1 and v2 are the speeds of light in air and water,
respectively.
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Light travels from Q, the point we ‘‘see’’ on the circumference of the circle, to our

eye, Eye (see Figure 2). However, the light bends in such a way that the path obeys

Snell’s Law for refraction. This law says that

sinð�1Þ

sinð�2Þ
¼

v1
v2

or

v2 sin �1ð Þ ¼ v1 sin �2ð Þ

where �1 is the angle between the line of vision from Eye to P and the vertical line to

the flat surface of the water at the point, P, where the refraction or bending of

the light occurs, and �2 is the angle between the line of light from P to the point Q

on the disk we ‘‘see’’ and the vertical line to the flat surface of the water at the

point, P.
We can obtain Snell’s Law, a relationship between the speed of light in one

medium and an adjacent medium and the angle of incidence of light and the angle of

refraction of light at the interface of the two media, through an optimization process

by using Fermat’s Principle which says that light travels from point Q to the Eye

along the path of least time. This can be a separate activity or a preliminary part of

this larger problem. The derivation of Snell’s Law from Fermat’s Principle is a

standard calculus text exercise. We work from Snell’s Law in this article.
Now if we emptied all the water out of the tank and the circular disc were in the

same position, then our line of vision from Eye to a point of tangency, call it Q0, on

the circle, would be just a small distance up the circle from Q. Incidentally, in

Figure 2, the line from P to Q has to be tangent to the circle at Q as well. Figure 3

shows the refracted light path in the case where there is water present and the

straight line path of light (to the left of the bent path through P) if there is only air

present.

Figure 3. Depiction of a circular disc (circle) sitting vertically on the bottom of a pool of
water with our eye directly over the plane of the circle. Two paths of light from Q to the Eye
are shown (1) the refracted light through the point P on a bent path from Q to the Eye and
slightly to the left of this bent path we see (2) the straight path of light if there was no water,
only air. This latter light emits from a point Q0 slightly up the circle from point Q. See Figure 4
for close up.
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If we were to zoom in around the point Q0 we would see that because of the
refraction of light due to the water and hence the bending ‘‘out’’ of the light away
from the circle we can actually see farther along the circumference of the circle to
point Q, than to point Q0. See Figure 4.

Now with this introduction for the reader, here is the question we ask our
students after this initial discussion and conjecturing.

‘‘How much more of the circumference of the circle can we see when we
submerge it into water and the geometry remains the same?’’

This is the challenge. This is the complex problem and technology that will help us
solve it.

2.1. Straight light path – no water, circle in air

We first consider what has to be done, i.e. what mathematical formulations can be
rendered, to determine just how much of the circumference of the circle we can see if
there is no water. We do this in a classroom setting in which students work in small
groups and have access to blackboards at which they sketch out their ideas and
computers where they can implement ideas and get quick feedback. We seek to
determine the extreme point(s) that can be seen on the circumference of the circle
from Eye. From these we can compute the portion of the circumference of the
circle we can see. By symmetry we focus our analysis on one side of our circle and
double our results as appropriate. See Figure 5.

We give coordinates to our situation. Suppose the origin (0, 0) is at the bottom of
the circle – the base of the tank. The horizontal line along the base of the tank will be
the x-axis while the vertical line from the point (0, 0) through the center of the circle
(a, b) to our Eye will be the y-axis. The equation of the circle with center O¼ (a, b)
and radius r is (x� a)2þ (y� b)2¼ r2. We seek to find the coordinates, (u, v) of the
point Q0 on the circumference of the circle that is the extreme (farthest right) point
we can see from Eye at (0, sþ h) where s is the depth of the water when we do fill the

Figure 4. Close-up of the circle. Point Q0 is the point we can see from Eye if there were no
water while point Q, due to the refraction of the light in water and hence the bending ‘‘out’’ of
the light away from the circle, is the point we could see if water were present. Notice the two
tangent lines to the circle at Q0 directly from Eye and at Q from point P, where the light is
refracted at the water’s surface.
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tank and h is the height of the eye above the surface line of the water. Obviously, the

line from Eye at (0, sþ h) to Q0 is a tangent line, and as such, this line, call it EQ0, is

perpendicular to the radius of the circle. In this case we have a vector argument that

the tangential vector EQ0 ¼ hu� 0, v� ðsþ hÞi is perpendicular to the radial vector,

OQ0 ¼ hu� a, v� bi. Using the fact that perpendicular vectors have their

dot product equal to 0 we have our first equation or constraint on the

point Q0 ¼ (u, v):

u� 0, v� sþ hð Þ
� 	

� u� a, v� bh i ¼ 0: ð1Þ

The second constraint is the fact that the point Q0 ¼ (u, v) lies on the circle:

u� að Þ
2
þ v� bð Þ

2
¼ r2: ð2Þ

Now, as a teacher, one is always concerned with how we are to proceed and

how general the analysis could be. For the purpose of this exploration we use

numbers to give students a sense of the situation. We use the following values:

Height of the waterline s ¼ 10m,

Distance to the Eye above the waterline h ¼ 2m,

Radius of circle r ¼ 3m, and

Centre of circle ða, bÞ ¼ ð0, 3Þm:

In Mathematica we offer the following command to solve the two equations for the

two unknowns u and v:

Solve½ffu� 0, v� ðsþ hÞg � fu� a, v� bg ¼¼ 0, ðx� aÞ2 þ ðy� bÞ2 ¼¼ r2g, fu, vg�g

We obtain two solutions. From the form of the solution students can tell that one

solution corresponds to the x-coordinate of the extreme point Q0 we can see on the

right side of the circle (Figure 5) while the other solution corresponds to the

x-coordinate of the extreme point we can see on the left side of the circle. There is

Figure 5. View of Eye–Circle configuration showing our labels and the extreme (right) point
Q0 we can see without the presence of water.
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symmetry about the vertical line from our Eye to the centre of the circle and we can
confine ourselves to the computations with Q0 and take advantage of the symmetry
when appropriate. Thus, our point Q0 ¼ (u, v) is given in terms of h by:

u ¼ u hð Þ ¼
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ 4Þ=ðhþ 7Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ 7Þ=ðhþ 10Þ

p and v ¼ v hð Þ ¼
3ðhþ 10Þ

hþ 7
:

We do a reality check at this point. As h!1, i.e. we are moving farther away
from the circle and we can see more and more of the circle’s circumference, indeed,
‘‘at’’ h¼1 we can see half of the circle for

lim
h!1

u hð Þ, v hð Þð Þ ¼ lim
h!1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ 4Þ=ðhþ 7Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ 7Þ=ðhþ 10Þ

p ,
3ðhþ 10Þ

hþ 7

 !
¼ 3, 3ð Þ

and (3, 3) is the extreme point on the horizontal diameter through the point
(a, b)¼ (0, 3).

With a bit of geometry and trigonometry we can compute, as a function of h, the
amount of the circumference in metres we can see when our Eye is placed at height
hm above the surface of the water, directly above the centre of the circle. We actually
double the portion of the circle we can see on the right side. We call this
function see(h).

see hð Þ ¼ 2
�

2
� tan�1 vðhÞ � 3

uðhÞ

� �� �
:

We offer a plot of see(h) versus h in Figure 6 and note the asymptotic behavior of the
amount of the circle we can see getting closer to 3� as h increases.

2.2. Bent light path – circle in water

Now let us turn to the situation in which we have water in the tank to a
depth of s¼ 10m, i.e. covering the disc. This is the situation in Figure 2. We are

Figure 6. For the case of no water this is a plot of the amount of the circumference (radians)
that can be seen with the eye at height h above the surface of the water, directly above the
centre of the circle. Notice how this approaches 3� (half the total circumference of the circle)
as h increases.
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given the location of the our Eye at (0, sþ h), h m above the height of the water,
which is s m deep.

Using the same coordinate system as in the situation in which there is no water
we seek to find the path of light from our Eye (0, sþ h) to the new point of tangency,
Q¼ (u, v), as the ray of light crosses the interface between air and water at some
point, we called it P¼ (x, s). Here, x m is the distance along the water’s surface from
the vertical line from our Eye through the centre of the circle to the point P at which
the light path cuts the air–water interface in Figure 2. We now have three constraints
on our variables

Q¼ (u, v) must be on the circle. This yields equation (3):

u� að Þ
2
þ v� bð Þ

2
¼ r2: ð3Þ

The line PQ must be tangent to the circle, i.e. PQ must be perpendicular to the
radial vector connecting (u, v) and the centre of the circle (a, b). This means the dot
product of hu� x, v� si and hu� a, v� bi must be 0. Hence equation (4):

u� x, v� sh i � u� a, v� bh i ¼ 0: ð4Þ

Finally, we use Snell’s Law, v2 sin(�1)¼ v1 sin(�2), where �1 is the angle between
the vertical line through our Eye and the line from our Eye to the point, P¼ (x, s),
and �2 is the angle between the vertical line through our Eye and the line of light from
P to the point Q¼ (u, v), to give a third constraint in equation (5).

v1
u� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu� xÞ2 þ ðs� vÞ2
q ¼ v2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ x2

p : ð5Þ

In the case of no water we were able to determine the coordinates of the extreme
point on the circle we could see as an explicit function of h and from this compute the
amount of the circumference of the circle we could see as a function of h, see(h).
However, in this case equations (3), (4), and (5) yield no analytic solution for the
coordinates u and v as a closed-form function of h. Thus, we need to determine the
point Q and from this the amount of the circumference of the circle we can see for
specific numerical values of h. Mathematica permits us to build a list, CrookedData,
of the data (h, u(h), v(h)) by marching through values of h from, say, h¼ 0.5 to h¼ 20
in steps of 0.5 while Appending the data triples as we go. The absolute values (Abs)
are to ensure that we get the data points on the right side of the circle. The [[2]] forces
Mathematics to pick the second of the two solutions in sol./. is Mathematica’s way of
saying, ‘‘according to’’ the second solution (sol [2]).

CrookedData={};
Do[sol=NSolve [{eq1, eq2, eq3}, {x, u, v}];

AppendTo [CrookedData, {h, Abs [u/. sol [[2]]], Abs [v/.sol
[[2]]]}], {h,.5, 20,.5}]

Now we fit an interpolating function through this data and plot this new function
of h, which computes the amount of the circumference of the circle we can see with
water present. We use Mathematica’s InterpolationFunction command. In Figure 7
we plot this numerical function (thick) with the analytic function obtained in the case
when no water was present (thin).
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Figure 7 shows that we can see more of the circumference with water present
(thick line). This is not surprising. How much more arc of the circumference of the
circle can we see at each new height h? In Figure 8 we plot the difference between the
two functions.

With what we have done so far here is another question we ask:

‘‘At what height, h, for our eye above the surface of the water, is the increase
in the circumference of the circle we can see between the two cases – without
and with water – greatest?’’

From the two functions we have for the amount of circumference of the circle
(radius r¼ 3m), one with water and one without water, we can compute the
maximum difference and we find it to be 0.200659m at a height of h¼ 4.9745m.
This is an increase of 1.0645% in the amount of the circle visible due to the presence
of water. This tells us that not only can we see more when water is present, but there
is a height at which our difference is greatest.

Figure 7. Plots of amount of the circumference of the circle we can see with water (thick) and
no water (thin).

Figure 8. Plot of the difference in the amount of the circumference of the circle we can see
with water and without water.
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3. Seeing around a ball under water

We now return to our original problem of looking directly down at a sphere while

our eye is above the surface of the water and the sphere is under water. Again, our

eye is directly above the North Pole of the sphere. We are interested in seeing exactly

how much of the sphere we can see when it is under water and comparing this with

the amount we can see if there is no water.
We represent the circle of Figure 5 parametrically by x(t)¼ aþ r sin(t) and

y(t)¼ bþ r cos(t), 0� t� 2�. We use this to compute the surface area swept out by a

piece of this circular arc from an angle 0 to an angle � (both, measured off the

vertical line from our Eye to the centre of the circle (a, b)) on the right side of the

circle as seen in Figure 5 as this piece of arc rotates about this vertical line:

Z �

0

2�x tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 tð Þ2þy0 tð Þ2

q
dt:

We use this to do our computations of how much of the surface of the sphere we can

see both with and without water present. We build two functions for the amount of

the surface of the sphere we can see in these two instances, both as a function of h.
From the two functions we have for the amount of surface area of the sphere of

radius r¼ 3m (with and without water) we can see in terms of h we plot the

difference in the amount of the surface of the sphere we can see with water and

without water as a function of h see Figure 9. From this we compute the maximum

difference in the surface area of the sphere we can see and we find it to be 1.83986m2

when our eye is at a height of h¼ 5.27441m. This is an increase of 1.6268% in the

amount of the sphere visible due to the presence of water. Again, this tells us that not

only can we see more of the sphere when water is present, but there is a height at

which our difference is greatest. Additionally, the maximum percent difference in

the surface area we can see is about a half a percent more than in the increase

we obtained for the maximum percentage difference in the amount of circumference

we can see.

Figure 9. Plot of the difference in the amount of the surface of the sphere we can see with
water and without water.
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4. Conclusion

We have presented a calculus problem with some nice geometry, trigonometry, and
optics, which is complex, benefits from technology, and offers an interesting
observation, namely, when we place a sphere in water we can see more of it than
when it is in air!

We believe such problems are appropriate to help students put together
their studies from different periods in their mathematical education and to make
appropriate use of technology. We encourage you to consider this problem and to
design others like it for your students so they can experience complex, technology-
based problems in calculus with applications in science and engineering.
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