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ABSTRACT: 
 
We investigate several algorithms in the attenuation of broadband noise in both vehicle-mounted 
and ground arrays in an effort to increase target detection range. Many adaptive filtering  
techniques have been developed for use in noise cancellation applications when the noise 
statistics are unknown and non-stationary; or changing over time.  We adapt variants of the least-
mean-square (LMS) adaptive prediction algorithm to simulations as well as ARL test data. The 
computationally efficient block LMS algorithm is less sensitive to signal transients due to the use 
of averaging, and is therefore more stable.  The normalized LMS algorithm gives more rapid 
convergence in highly non-stationary situations.  
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INTRODUCTION 
 
One of a class of adaptive filtering algorithms, the least-mean-square (LMS) algorithm, 
introduced by Widrow and Hoff [1], has been widely used in noise cancellation and other signal 
processing applications due to its computational simplicity and robustness to changing signal 
statistics. A typical adaptive noise cancellation scheme is depicted in Figure 1. Assume that a  
discrete-time signal of interest, )(ny , is corrupted by a noise process, )(nz . The “primary” 
signal at the filter input is )()( nzny + . A noise “reference” signal, )(nx , consisting of some 
version of the noise process (represented here as a transfer function H ) is then filtered and 
subtracted from the primary. The filter W  attempts to match the primary signal by minimizing 
the filter output, )(nε , in the mean-square sense. The justification for this will be seen shortly. 



 
                                                        Fig. 1. Adaptive noise cancellation scheme. 
  
If the filter, W , is implemented as a linear finite-impulse response transversal filter with L+1 tap 
weights, the problem can be viewed as that of predicting the primary signal on the basis of L+1 
past samples of the reference. The prediction error is given by 
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where )](),...,2(),1( ),0([)( Lwwwwn =w  is the vector of filter weights, and 

)](),...,2(),1(),([)( Lnxnxnxnxn −−−=x . The n -dependence of the vector )(nw  reflects the  
fact that the filter weights are adjusted with each input sample. Thus the filter “adapts” 
to changing or unknown noise statistics. The problem then is to judiciously choose the filter 
weights. 
 
If the noise process, )(nz , and the signal of interest )(ny are uncorrelated, then the prediction 
error power is the mean-squared error given by the expected value  
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Thus the best predictor of the primary )()( nzny +  is attained precisely when the noise power is 
minimized. As is well-known (see, e.g., [2]) if the noise process is stationary, the filter weights 
which minimize (1) are given by the Wiener-Hopf equations:  
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where )]()(([][ , jnxinxEjixx ++=R  is the matrix of noise covariances, and 
 )x(n-L)])),..., y(n-), y(n)x(n-), y(n)x(nE([y(n)x(nxz 21=P  is the vector of cross-correlations.  
 
In practice, both the signal of interest and the noise process are usually non-stationary with  
unknown statistics which must be estimated from the data samples.  The basis of the LMS 
algorithm is the replacement of the unknown ensemble average in (1) with the sample 
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For any n , 2)(nε  is a quadratic function of the filter weights, with a unique minimum. 
Furthermore, the gradient, 2( ) : ( ( ) )n grad nε∇ = , is a vector in w-space which points in the 
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direction of maximum increase of 2( )nε . Starting with an initial weight vector, (0)w ,  the LMS 
algorithm recursively adjusts the weights in the direction of maximum decrease of 2( )nε : 
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where the step size, µ , is a design parameter which serves to control the magnitude of the 
correction to ( )nw . In the case of stationary statistics, ( )nw  will converge to the optimal Wiener 
filter provided µ < 1/ maxλ , where maxλ is the maximum eigenvalue of xxR , whose eigenvalues 
are all positive [2], [3]. In the non-stationary case, the quadratic error surface 2( )nε evolves over 
time, and the algorithm continuously seeks the changing minimum. 
 
The use of the LMS algorithm in attenuating broad band vehicle self-noise in roof-mounted 
listening arrays was discussed in [4]. In that setting, the noise consists of narrow band “tones” 
created by the cylinders of the diesel engine, as well as broad band components. A reference of 
the noise can be obtained from acoustic sensors in the engine compartment. The LMS algorithm 
performs well in attenuating the high-power tones generated by the engine diesel engine, but 
performs poorly on the broad band components. As noted in [4], one reason for this is that the 
gradient, ( )n∇ , increases most rapidly in the direction of the eigenvector corresponding to large 
eigenvalues, which correspond to large noise components. The tones of the diesel engines tested 
use on the battlefield are typically 30-40 dB stronger than the broad band components. A 
practical limitation is that it is difficult to obtain a noise reference which is highly correlated the 
noise in the primary. We see from (0.2) that if ( )x n  and ( )z n  are uncorrelated, the filter  “shuts 
off”, as all the filter weights are zero.  
 
In [4] a non-LMS based approach was proposed for attenuating broad band noise components. In 
this paper, we apply variations of the LMS algorithm to test data obtained from both vehicle-
mounted and ground-based listening arrays.   
 
 
ADAPTIVE PREDICTION FILTERS 
 
One application of the LMS algorithm proposed by Widrow, et al. [5] in the context of noise 
cancellation is that of a prediction filter. These “adaptive prediction filters” can be effective 
when the noise de-correlates over time much more rapidly than the signal of interest [6]. As is 
well known, this is true when the noise process has a much wider band width than the signal of 
interest. For example, a single complex sinusoid ( ) inx n e ω=  has covariance sequence 

( ) ( ( ) ( )) ikc k E x n x n k e ω= − = , which has unit magnitude for all k , while white noise samples 
separated by one or more lags are uncorrelated. Thus, all covariances are zero except the central 
one. It would seem likely that this implementation of the LMS algorithm would be effective in 
canceling the broad-band components of vehicle self-noise. The narrow band components could 
then be attenuated using the LMS with noise reference as described above.  
 



Consider a narrowband signal, ( )y n , corrupted by wideband additive noise, ( )z n . The adaptive 
prediction filter scheme depicted in Figure 2, a modification of that in Figure. 1, uses a delayed 
version of the primary signal, depicted as the ∆ -block in Fig. 2, as a reference. A “bulk delay” 
parameter, ∆ , is chosen large enough that the ( )z n  is de-correlated with the delayed signal, 

( ) ( ) ( )x n y n z n− ∆ = − ∆ + − ∆ . As in the standard LMS, samples ( )x n − ∆  are then used to 
“predict” the primary, with the error given in (0.1). 
  
                                   ( )z n  

 
                                              Figure 2. Adaptive prediction scheme 
 
The mean squared error (0.2), and the squared error (0.4) become, respectively, 
 
                                   2 2 2( ( ) ) ( ( ) ) ( ( ) ( ) ( ) ')E n E z n E y n n nε = + + − ∆w x                            (1.1) 
                                            2 2 2( ) ( ) ( ( ) ( ) ( ) ')n z n y n n nε = + + − ∆w x  .                                  (1.2) 
 
Thus the filter is optimized when the output, ( )r k , most closely matches the narrowband signal 
of interest, ( )y n .  The filter weight update recursion (0.5) becomes  
 
                                           ( 1) ( ) 2 ( ) ( )n n n nµε+ = + − ∆w w x  ,                                          (1.3) 
 
where 
 
                                                 ( ) ( ) ( ) ( ) 'n x n n nε = − − ∆w x .                                              (1.4) 
 
We will consider two variations of the adaptive prediction filter applied to test data obtained 
from sensors mounted on the HMMV and M113 vehicles, as well as ground-based array sensors. 
First, we will apply the filter to simulated data and address the performance.  
 
FILTER PERFORMANCE   
 
Let ( )x n  consist of a sinusoidal signal in white Gaussian noise,  
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where iA  are amplitudes, iϕ  are independent uniform  random phases, iω are normalized 
frequencies in cycles/sample, and ( )z n  is the noise process. The assumption on the random 
phases is necessary to ensure that ( )x n  is a stationary process. Let ( ) and ( )I OP Pω ω  denote the 
power spectral densities of the input and output to the filter, respectively. First consider the 
situation with one sinusoid corresponding to 1m =  in (2.1). To evaluate performance, we will 
use the following expression [6] for the filter gain: 
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Expressed in dB, (2.2) gives a ratio of signal-to-noise ratios of output to input spectra, and thus 
give the increase, in dB, of the sinusoid relative to the background white noise. If 2υ is the 
variance of the white noise process, the gain, (2.2) can be expressed [6] 
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=  is proportional to the input signal-to-noise ratio. Figure 3 

shows periodogram estimates of the input and output spectra, respectively, for a simulated 
sinusoid of the form (2.1) with normalized frequency ω =0.3, 1024,  .0015,L µ= =   

2 =1, and 1σ υ∆ = = . Note that =1∆ is sufficient to de-correlate the process ( )z n . 
 

 
(a) (b) 

 
                     Figure 3. Filter input, (a), and output, (b), power spectra for sinusoidal signal with 2.3, 1024, .0015, and 1Lω µ σ υ= = = = = . 
 
The filter gain appears to be in agreement with the predicted gain ( ) 20G ω ≈ dB. Figure 4 shows 
the ability of this same filter to separate closely spaced sinusoids. Again, the filter gain 

( ) 20G ω ≈ dB for each sinusoid. This corresponds to the fact that the spectra (and hence the gain,  
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( )G ω ) for  multiple sinusoids may be obtained as a superposition of those corresponding to 
single sinusoids [7].  
    
 
 

 
                                               (a)                                          (b)    
                                                       Figure 4. Filter input, (a), and output, (b), power spectra for sinusoidal signal                                                                    
                                     with 2

1 2.3,  .29, 1024,  .0015,  and 1.Lω ω µ σ υ== = = = =  

 
 
Filter Parameters 
 
Note that (1.2) holds only if the noise correlation time (in samples) is less than the bulk delay 
parameter, In order that the filter be effective, ∆ should be chosen less than the signal correlation 
time, in samples, otherwise the filter weights are zero, as observed in the previous section. For 
the simulations above, the choice of ∆ is not critical; any value greater than zero will suffice. 
The optimal filter order is given by [6] 
                                 
                                                /opt sL f α= ,                                               (2.4) 
 
where sf  is the sampling frequency and α  is the signal bandwidth. In the case of sinusoids, the 
bandwidth is zero and the choice of 1024L =  above is somewhat arbitrary. Indeed, similar 
reductions in broadband noise were obtained with L  ranging from 256 to 2048, as long as µ  
was chosen sufficiently small, in accordance with (2.3). A larger value for L may be necessary to 
resolve closely spaced sinusoids [6]. Note that as L increases (2.3) holds for values of ω  closer 
to 1ω . The choice of µ is critical, as it controls the convergence and ability of the filter to track 
changing statistics. To guarantee stability, it suffices that µ < 1/ ( )trace zzR , for example [2].  
 
Figure 5 shows the error, ( )nε , for the signal depicted in Figure 3 for two sets of values of filter 
order and step size, with all initial filter weights equal one. We see that the convergence is quite 
slow in both cases. In practice, the weights can be “trained” initially to the data by running the 
algorithm repeatedly on the first few seconds of data, using the converged values of the filter 
weights as new initial weights. As noted below, this effect can also be achieved with the 
normalized LMS algorithm.     
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                             (a)                     (b) 
                          Figure 5. Filter error for one sinusoid in WGN, 200,000 samples, initial filter weights =1,  
                                    (a) L=1024, .0015µ = , and (b) L=256, .015,  1.µ = ∆ =                    

 
NORMALIZED AND BLOCK ALGORITHMS 
 
Two variations of the prediction filter of (0.2) and Figure 2 will be considered. The normalized 
LMS algorithm (NLMS) [8] adjusts the step size parameter with each sample by replacing µ  in 

(0.5) with ( )
( ) ( )Tn
n n
ρµ =

x x
. Thus (1.3) becomes 
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The recursion (0.5) for the filter weights then becomes 
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where ρ is a design parameter which controls the convergence rate. Several interpretations for 
the choice (3.1) are given in [8]. For ρ =1, (3.1) minimizes the a-posteriori error, 

( ) ( ) ( 1) ( ) 'n x n n nε + = − + − ∆w x . Additionally, since the filter misadjustment, defined as a ratio 
of error to minimum error, ( )nε / minε , is proportional to squared energy of the signal, which 
suggests choosing as in (3.1). Lastly, it can be shown that (3.2) is proportional to performing the 
recursion (1.3) repeatedly on each sample until the filter weights converge. These properties 
would seem to give the NLMS algorithm more rapid convergence in a stationary environment 
and the ability to adapt quickly to non-stationary environments. 
 
The block LMS (BLMS) algorithm [8] adjusts the filter weights after every “block” of data 
samples, using as an estimate of the gradient in (0.5) and an average of errors (0.1) for the past 
k samples. The recursion (1.3) becomes, for the thk block of length M , 
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 The chief advantage of the using (3.3) over standard LMS is that the averaging of the errors 
results in gradient vectors, and thus filter weights,  with less variance. Thus, larger step size can 
be used without the filter becoming unstable. The trade-off is that  BLMS will adapt more slowly 
in highly non-stationary environments.  
 
 
HMMV and M113 TEST DATA 
 
In this section we show the results of applying the adaptive prediction filter in (1.3) to test data 
obtained at Aberdeen Proving Ground in September of 2001. Noise cancellation was performed 
on a signal obtained from a microphone mounted on the roofs of the HMMV and M113 vehicles. 
The sampling frequency for this test data is 2048 samples/sec. Filter parameters: 

2048,  .0015,  25.L µ= = ∆ =   
 
HMMV at Idle. 
 
Figure 6 (a) shows power spectra from filter input and output from the HMMV at idle. This 
situation is approximately stationary. The spectra are taken from .5 seconds of data several 
seconds into the filtering process. We see from the filter error in Figure 6 (b) that the filter error 
stabilized after approximately 1.5 sec. The error is initially zero due to the fact that filter uses 
samples delayed by 1L + + ∆ =21074 lags to predict the current sample. We see that the tone near 
50 Hz=0.02 cycles/sample is 25-30 dB greater than the surrounding broad band noise “pedestal” 
at the filter input.  We see an apparent broad band attenuation ( ) 40G ω ≈ dB in the filtered 
signal.  
 
The 50 Hz tone is created by the HMMV diesel engine, and can subsequently be cancelled via 
conventional LMS [4].  The resolution exhibited in Figure 4 (b) enables the filter to resolve 
vehicle self-generated tones and those created by a similar target vehicle.  
 
The stationarity of the signal is apparent from the time-frequency plots of filter input and output 
in Figures 6 (c) and (d).  
  
 



 
(a) (b) 

 
                                           (c)                          (d) 
                            Figure 6. (a) HHMV roof mic and filter output. (b) Filter error for 0.5 seconds of data. (c) Spectrogram              

                         of 5 seconds of input. (d) Spectrogram  of 5 seconds of filter output.  L=1024 .0015,  25.µ = ∆ =  

 
 
M113 at Idle 
 
Figure 7 (a) shows power spectra from filter input and output from the M113 at idle. Again, as is 
apparent from the time-frequency plot of the filter input, Figure 7 (b), this situation is 
approximately stationary. The spectra are taken from 0.5 seconds of data several seconds into the 
filtering process. The M113 diesel engine has several tonal components. Broadband attenuation 
is again apparent from Figures 7 (b) and 7 (c).   
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                                                (c)    

           Figure 6. (a) M113 roof mic and filter output. (b) Spectrogram of 180 seconds of input. (c)(c) Spectrogram of 4  seconds                                     
.           of filter output.  L=1024 .0015,  25.µ = ∆ =       
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