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1 Executive Summary 
 
Explosive growth in the size of modern data sets is found not only in the number of records but 
also in the number of variables each record carries.  Building any kind of predictive or 
explanatory model from such a data set presents a novel challenge.  We present a method of 
building an explanatory model based on David Scott's parametric L2E criterion.  The empirical 
evidence suggests that the method exhibits a feature which enables presence of outliers to be 
easily detected and can also be used to select explanatory variables with (very much counter-
intuitively) less ambiguity when the outliers are present than otherwise. We apply the method to 
develop plan evaluation metrics through analyses of OneSAF simulation runs. 
 
2 Introduction 
 
The enormous changes in the very notion of data that have come about lately pose many new and 
exciting challenges to statisticians.  Primarily, most of these novel problems have to do with the 
sheer size of modern data sets that rapid advances in technology enable us to have.  Recent 
works in the budding field of data mining is a good example illustrating the challenges 
statisticians face in dealing with large data sets.  The enormity of the modern data sets forces the 
extension and adaptation of statistical methods starting from exploratory data analysis 
procedures and beyond [1]. 
 There are two important requirements for a viable data mining method: speed and 
robustness.  The need for speed is obvious in that any lack of speed in analysis will be greatly 
amplified for larger data sets, and it usually compels one to focus more on the algorithm than on 
the statistical model.  In addition, any large data set will invariably have imperfections and its 
enormity will complicate any preprocessing that may be needed to clean it up.   Therefore, 
procedures for building a statistical model that can describe a large data set with reasonable 
speed and sufficient robustness to resist inevitable data corruption are needed more than ever. 
 Rapid advance in hardware technology is an inseparable companion in this endeavor, and 
it can be argued that the robustness of the algorithm then takes more prominence than otherwise.  
A recently proposed framework for data analysis by David Scott [2] gives us a promising 
candidate for a robust algorithm suitable for analyzing large data sets.  Scott [2] proposed 
minimizing the integrated squared error as an encompassing paradigm in which a large variety of 



simple and complex parametric models can be built with robustness.  On a space of square 
integrable functions, the integrated square error (ISE) 
 

∫ −= dxxfxfISE 2)]()(ˆ[ ,         (1) 
 
where )(xf  is the true (and usually unknown) underlying density and )(ˆ xf  is a nonparametric 
estimator of  )(xf , is a time tested optimality measure in nonparametric curve estimation, for 
example, as a starting point in development of least squares cross validation algorithm of 
Bowman [3] and Rudemo [4].  An attractive property of ISE is that an equivalent functional to 
be minimized can be written empirically (based on iid observations nxx ,...1 ) as--calling the 
equivalent functional EL2  
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The minimization of this functional is done over a suitable class of functions.  Scott [2] 
shows this criterion can be used in parametric settings if the minimization is done over a 
parametric family, and the resulting estimators have robustness properties that are known to be 
possessed by the class of minimum distance estimators. 
 The EL2  criterion given in Eq. (2) can be used in fitting a class of models 
 

ε+= )(xfy            (3) 
 
where x may be a vector in dR  and a parametric distribution, e.g. ),0( 2σN , for ε  may be 
assumed.  Of course, simple and multiple regression models belong to the class.  In the next 
section, a theoretical development of EL2  regression, both simple and multiple, is given, with an 
attempt at automatic variable selection method given at the end. 
 
 
3 L2E Regression 
 
As was mentioned in the introduction, any model in the form of Eq. (3), whether it is linear or 
nonlinear in parameters, can be fitted by minimizing the EL2  functional given in Eq. (2).  In this 
report, we will concentrate on a linear regression model which may be expressed as 
 

ε++++= kk xbxbby L110          (4) 
 
and we assume ε  is normally distributed with mean 0 and variance .2σ   We then have for the 
density of the error component in the model 
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Solving the Eq. (4) for ε  and substituting into Eq. (5), we can write the EL2  functional to be 
minimized as 
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where ikkiii xbxbby ,,110 −−−−= Lε  for ni ,,1K= .   
 Clearly, it is not quite practical, to say the least, to write down the analytic solutions to 
this nonlinear minimization problem, but most of the nonlinear minimization routines built into 
many popular packages can easily be adapted to give us the numerical solution.  All of the 
numerical work done in this report was done using the statistical program R. 

  
 

3 Variable Selection Using L2E Estimates of σ 
 
The robustness of the EL2  estimate of σ, which is estimated by MSE  in the least squares 
theory, leads us to conjecture that robust variable selection may be implemented if we use the 
estimate of σ as the criterion in variable selection.  In the least squares theory, MSE is an 
unbiased estimator of σ2 and is also used as a criterion in variable selection (see, for example, 
[5]).  However, as was illustrated in the previous section, MSE is not robust in that a few points 
can easily influence the estimate.  On the other hand, if MSE may be used in variable selection in 
the least squares framework, a more robust equivalent of MSE may lead to a more robust 
variable selection scheme.  

Let us look at a simulated example to see how we can incorporate EL2  estimate of σ in 
variable selection. A data set of 100 points was simulated from the true model (with no 
contamination) y = 3−x2 +4x3 −7x4, and σ = 0.2. As in a forward selection procedure, a simple 
regression model was fit using each of x1, … , x4, and the values of sL, denoting the EL2  estimate 
of σ, were obtained and compared (see Table 1). 

 
 

Table 1: L2E estimates of sL with different explanatory variables. Each variable was the 
only explanatory variable, yielding a simple regression model. 

 
Explanatory variable sL from the model with given exp. var. 

x1 18.19 
x2 16.86 
x3 18.52 
x4 9.982 

 
 



 
The result seen in Table 1 strongly suggests that we select x4 as the first variable to be entered 
into the model. Now what happens as we add the remaining three variables one by one to the 
model with x4 and compare the resulting sL? Table 2 shows that adding x3 results in the marked 
reduction in sL. 

 
 
 
Table 2: L2E estimates of sL with different explanatory variables when x1, x2, and x3 were 

added to the model equation. 
 

Explanatory variable sL from the model with given exp. var. 
x1 , x4 9.86 
x2 , x4 9.87 
x3 , x4 2.69 

 
 
 
Choosing the model with x3 and x4 using the “sL criterion,” we now compare what 

happens to “sL” as we add x1 and x2. As Table 3 demonstrates, seeking the reduction in sL helps 
us reach the correct model (y = 3−x2+4x3−7x4, containing x2, x3, and x4).  

 
 
 

Table 3: L2E estimates of sL with different explanatory variables when x1 and x2 were 
added to the model equation which already contained x3 and x4. 

  
Explanatory variable sL from the model with given exp. var. 

x1 , x3 , x4  9.80 
x2 , x3 , x4 0.19 

 
 
 
Now, when the simulated data set is not contaminated (i.e.: no deliberately inserted 

outliers), addition of the extraneous explanatory variables results in not much change in sL which 
is also the case when the least squares estimate of σ2 is used. However, something remarkable 
happens when we use sL , estimated using L2E criterion, from a contaminated data set. In such a 
case, addition of an extraneous variable results in the increase of sL. Table 4 shows what happens 
when the same true model as above was used to simulate a data set with 20% contamination.  

 
 

 
 
 

Table 4: L2E estimates of sL of a model with correct subset of explanatory variables and 
another with an extra variable when the simulated data set was 20% contaminated. 



  
Explanatory variable sL from the model with given exp. var. 

x2 , x3 , x4  0.19 
x1, x2 , x3 , x4 6.73 

 
 
 
This suggests an unambiguous stopping rule: stop adding variables to the model equation 

when sL increases. In summary, the following heuristic variable selection rule is proposed. 
 

1. Choose the variable that gives the smallest sL at each forward selection step. 

2. Stop when adding any of the remaining variables gives no decrease in sL. 

The models with the appropriate selection of covariates were arrived at in many different models 
and at reasonable contamination levels. 
 

4 Applications 
 
In this section, we apply the heuristic variable selection method outlined in the previous section 
to “develop plan evaluation metrics” (i.e. to find explanatory variables with which we can build 
a multiple regression model explaining interesting features of the executed plan) through 
analyses of One Semi Automated Forces (OneSAF) simulation runs of an armor engagement.  
The scenario was based on the engagement of a “blue” armor company against “red” units 
situated along the way to the objective of the “blue” company. The original data set contained 
143 variables at each of three time slices containing individual vehicle-level information for 228 
OneSAF runs, resulting in 228×430 data matrix–where 430 is 143×3+1, the last column 
corresponding to the indicator variable for the “blue” mission success. For example, the data set 
contained the number of 105 SABOT round hits from the second “blue” platoon on “red” T80 at 
each of three time slices: N05ST2S1, N05ST2S2, and N05ST2S3. These three are of course 
heavily correlated with one another. 

One of the interesting questions in analyzing such a simulation data is whether we can 
find a battle metric at an early stage that is very much related to the battle outcome. To that end, 
we examined only the variables corresponding to the first time slice, giving us 228x143 data 
matrix plus a column for the response variable, making it at least theoretically possible to fit a 
linear model including all possible covariates. Since we are going to use a variable selection 
method for a regression model, we need a quantitative score that has a strong bearing to the 
mission success as the response variable. There are two potential response variables in the data 
set: MBTSCORE and ERICSCOR. Figure 1 shows that indeed higher scores of these two in 
general correspond to the mission success (MA=1). 

 
 



 
 

Figure 1: Conditioning plot of MBTSCORE vs. ERICSCOR with the mission success 
(MA) as the conditioning variable. 

 
 
 
One thing of note, however, is that even as both quantitative measures of the mission 

success show strong correlation with each other and MA, the indicator variable for the mission 
success, there are a couple of points where ERICSCOR is high; MBTSCORE low; and it does 
not correspond to the mission success. 

Upon the examination of the entire data set, we found that this is the reflection of the fact 
that ERICSCOR is the measure only of the advancement of the blue units regardless of their 
condition, whereas the mission success does require that the blue units reach their objective in 



reasonable condition. Therefore, we chose MBTSCORE as the response variable in the 
regression model to be explored in the data. 

Table 5 summarizes the result of the heuristic L2E variable selection method described 
previously, and what follows is the explanation of what each of the coded variable measures: 

• MF3S1: The number of tanks in the third platoon that are mobility and firepower killed. 

• F3S1: The number of tanks in the third platoon that are firepower killed. 

• NKB1S1: The number of the red BMP catastrophic kills by the first platoon. 

• R05HB2S1: The average range of 105 HEAT engagement on red BMPs by the second 
platoon. 

• MF1S1: The number of tanks in the first platoon that are mobility and firepower killed. 

• N05HB3S1: The number of 105 HEAT round hits on red BMPs by the third platoon. 

• N05ST2S1: The number of 105 SABOT round hits on red T80s by the second platoon. 

 
 

Table 5: L2E estimates of the final multiple regression model (without any interaction) 
containing the variables selected using the heuristic method described in the previous section. 

 
Selected explanatory variables L2E Coefficients 

Intercept 584.01 
MF3S1 -127.01 
F3S1 -108.10 

NKB1S1 111.64 
R05HB2S1 0.047 

MF1S1 -152.05 
N05HB3S1 26.36 
N05ST2S1 -51.03 

 
 

 
A very interesting feature in the model arrived here is that the mission success and 

N05ST2S1 have a negative association. At first glance, this is somewhat counter-intuitive until 
one looks at the layout of the simulation scenario. The second platoon in the scenario actually 
follows another platoon, and if the number of hits on the red T80 by this following platoon is 
high at the time slice 1, an initial stage of the engagement, the implication is that the leading 
platoon has been rendered somewhat ineffective, hence potentially leading to the mission failure. 
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