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Abstract 
 

 Inverting Laplace Transforms via the Bromwich Integral has proven to be too 
difficult, in general, to be a practical method for large classes of problems; therefore, 
approximation techniques abound.  In this paper we will examine four commonly 
used numerical algorithms for Laplace Transform inversion:  The Bellman, Kalaba 
and Lockett (BKL) method, Jacobi Polynomials, Heaviside Interpolation and the 
Dubner, Abate and Crump (DAC) algorithm.  Each will be evaluated on a broad class 
of functions to test its robustness, then we will examine how each performs when 
applied to problems of viscoelastic wave propagation. 
 

Background: The Transform Method 
 

 Integral transforms, as a method for solving Initial Value Problems (IVPs) and 
Boundary Value Problems (BVPs), compete with Separation of Variables and 
Green’s Functions as the most practical method for constructing analytic solutions to 
large classes of problems.  The Laplace Transform has found a tremendous amount of 
utility in problems that have a time evolution component.  It is the goal of this section 
to introduce what we will call the Laplace Transform method for solving Initial 
Boundary Value Problems (IBVPs).  In subsequent sections we will examine some 
methods for inverting the Laplace Transform numerically, test each of these methods 
on some common functions and finally test each method’s performance on problems 
in viscoelastic wave propagation. 
 The Laplace Transform of a time domain function ( )tf  is defined by the integral 
(when it exists): 
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The relevant property of the Laplace Transform that makes it a common tool for 
solving IVPs can be derived by transforming the time derivatives of ( )tf  and then 
performing the necessary number of integrations by parts: 
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Thus, the process of differentiation in the time domain ( t -variable) is reduced to 
multiplication in the transform domain ( s -variable).  Therefore, the transform of a 
differential equation becomes an equation with one less dimension to the domain of 
its independent variables, i.e. an ODE becomes an algebraic equation, a PDE in two 
variables becomes and ODE and so on.  After being transformed the equation can be 
solved by the appropriate methods in the reduced domain.  Then the transformed 
solution must be inverted to find the solution to the original problem in the original 
domain.   
 As a simple example, consider the IBVP: 
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This is the equation for uniaxial displacement, u , of an elastic body initially bounded 
by the planes 10,x = , subject to a unit step in stress at its right end and fixed at the 
left.  Although this problem falls within the class that could easily be solved by other 
methods, we will construct a solution via the Laplace Transform. 
 First, take the transform of all the quantities in this problem.  From now on, we 
will use a ‘hat’ to denote transformed quantities and drop any explicit reference to 
dependence on the transformed variable s ; for instance, ( ) ( )[ ]t,xuLxû = . 
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ûdûs
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We treat the transform variable s  as a parameter and solve the BVP by elementary 
means. 
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By rewriting ( )xû  and using a table of transform pairs we can solve for the 
displacements: 
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where 
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 Alternatively, we could have inverted ( )xû  by evaluating the Bromwich Integral 
via residue calculus 
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where c  is a positive real number chosen so that all the poles of the integrand lie to 
the left of the line cs = . 
 Evaluation is accomplished by approximating the path of integration from ∞− ic  
to ∞+ ic  with a closed contour RC  (called the Bromwich Contour) shown below. 

 

 



 
The integral around RC  is found by summing the residues of the integrand that lie 
within the contour.  Then in the limit as ∞→R the integral around this closed 
contour will equal the Inverse Laplace Transform provided that the contribution along 
the half circle of radius R  vanishes. 
 For the function ( )xûest , there is a second order pole at 0=s and simple poles at 
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By the uniqueness of the solution to this IBVP, we’ve demonstrated that these two 
series are equal, but more importantly to our purpose we’ve demonstrated that 
inversion via the Bromwich Integral is a nontrivial matter in the simplest of all cases; 
elastic waves.   Since we wish to consider more complicated cases of viscoelastic 
waves we need to consider other methods for inversion. 

  
 
Approximation of Transform Inversion 
 

 This is the situation in which we find ourselves:  We have an IBVP where the 
Laplace Transform seems to be the natural method with which to construct a solution.  
However, the solution we have in the transformed space does not lend itself nicely to 
inversion, i.e., it is not tabulated and the inversion integral is not easily evaluated. 
 Having invested some time and effort into constructing a solution in the 
transformed space, we would like to use that solution as the basis for a numerical 
approximation.  Each of the following subsections introduces a method that has 
proved effective in numerically inverting Laplace Transforms.  Then the following 
section will compare all of the methods (presented here) on a broad range of inversion 
problems to test the robustness of each method.  The last section will then compare 
the methods within the field of wave propagation in viscoelastic materials. 

 
 Bellman, Kalaba and Lockett (BKL) 

 The BKL method [1] is a specific instance of a more general class of methods 
known as Nystrom (or quadrature) methods for solving integral equations, [2].  Right 



now, we will describe the general Nystrom approach in a very simple situation.  
Then, after a quick example, we will show how to implement the BKL method. 
 For Nystrom methods in general, consider the definition of the transform itself: 
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The first step is to perform a change of variables so that the domain of integration is 
finite, then perform a (any) numerical quadrature routine to approximate the value of 
the integral on the finite domain. 
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Here, φ  is smooth, monotonic and maps [ )∞,0  to a finite domain.  The sum 
represents our quadrature rule with weights iw  and nodes ix .  We have also 
employed the shorthand: 
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We split the integrand into two pieces ( ih  and if ) for convenience.  In our final 
expression we will have a linear system of algebraic equations for the values 
of f evaluated at the nodes.  Therefore, the if  will be the components of the vector of 
unknowns. 
 To be more clear, we can explicitly denote those terms that depend on s  in the 
approximation of the transform. 
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If we were to fix a value for s  this expression would still hold.  In fact, we could 
arbitrarily choose N  different s  values and get N  separate equations whose only 
unknowns are the if . 
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 Now we can see that our approximation has led us to a linear algebraic system,  
 

yBc = , 
 

where ( )kiiki shwB = , ii fy =  and ( )kk sf̂c = . 
 Thus, we have reduced the approximate inversion of the Laplace Transform to 
solving a system of linear algebraic equations.  Of course, the accuracy of our results 
will depend heavily upon our quadrature method.  We are also limited to finding 
values of f at the nodes of the quadrature method, which are themselves not in the 
time domain, but in the image of φ .  So, finally, to find f  in the time domain we 
must invert φ  at the nodes. 
 One inescapable drawback that we will find with this method, regardless of 
quadrature method, is the conditioning of the linear system.  The matrix B  will 
always have a large condition number.  This is more of an artifact of the sensitivity of 
the process of inverting Laplace Transforms than anything easily remedied within the 
context of this particular approach.   
 We can illustrate this point with a simple example (this example does not use the 
BKL method).  Consider the transform pair: 
 

( ) ( )

( ) 22 4
2
2

π
π
π

+
=

=

s
sf̂

tsintf
 

 
If we pretend that we know the transform, ( )sf̂ , but not the time domain function, 
then we would be attempting to solve the equation 
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for ( )tf .  To employ the Nystrom method, we first map [ )∞,0  to a finite domain.  If 
we use ( ) tetx −= , then the integral equation becomes 
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Using the midpoint rule, we can approximate the integral: 
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The midpoint rule on ( )10,  uses the weights 
N

wi
1

=  and the nodes 
N

ixi 2
12 −

= , 

N,,i K1= . 
 To get N  equations for the N  unknowns, Nf,,f,f K21 , we still need to choose 
N  distinct values for s .  For convenience we will choose ksk = , N,,k K1= .  (We 
will make the same choice for s  in the BKL method.)  Therefore, we arrive at our 
linear system yBc =  with 
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It is good to notice that the matrix depends only on our choice of quadrature rule (in 
this case, the midpoint rule).  Only the vector c  depends on the particular function 
we wish to invert. 
 The following figures are of the condition number of the system as a function of 
N and the final approximation of ( )tf  using 10=N , respectively.  Notice that the 
graph of the condition numbers is nearly linear on the log-plot.  Therefore, the 
condition number grows exponentially with N . 
 

 



 
 Now, we will examine the BKL method in particular.  The BKL method is a 
Nystrom method, so the general approach is identical to the previous example.  In 
fact, we will perform the same change of variables, ( ) tetx −= , so that the transform 
is: 
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We could further scale and shift our integration variable x , so that the interval of 
integration is ( )11,− .  This is the domain for the Legendre Polynomials which are 
used to compute the weights and nodes of Gauss-Legendre quadrature; however, we 
may also use the so-called Shifted Legendre Polynomials [1] and achieve equally 
accurate results on ( )10,  without any further effort. 
 We will denote the thN  order shifted Legendre polynomial by ( )xPN .  The nodes 
of the quadrature method for BKL will be the roots Nx,,x K1  of ( )xPN .  The weights 
are calculated from the integral: 
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 This is enough information to establish the system of linear algebraic equations.  
However, as we saw with the simple midpoint method, the system will be poorly 
conditioned.  We will side-step some of the consequences of poor conditioning if we 
can avoid the need to numerically solve the linear system, i.e. we want to find an 
explicit expression for the components of the vector of unknowns: 
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This can be accomplished, see [1] for details, if we choose 
i

ki
ik w

q
a = , where the iw  

are the weights calculated above and the kiq  are the coefficients of a polynomial 
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with the property at the nodes 
 

( ) ijji xp δ= . 
 



So, we have an explicit formula for f at the zeros of the shifted Legendre 
polynomials.  Once we invert the change of variables, so that we can find f as a 
function of t , then we have completed the BKL method. 

 
 Jacobi Polynomials 

 The Jacobi polynomial method is one of several methods that are referred to as 
orthogonal polynomial methods, [3].  All orthogonal polynomial methods begin by 
expressing the time domain function as a series in terms of the relevant set of basis 
functions. 
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Transforming the series,  
 

( ) ( )∑=
n

nn sˆcsf̂ ϕ . 

 
The orthogonality of the basis functions will provide some way to express the first N  
coefficients of the transformed series in terms of f̂  evaluated at a set of discrete 
points.  These coefficients are then employed to build a truncated expansion for ( )tf .  
 We will choose ( ) ( ) ( )tPt ,

nn
βϕ 0= , the thn  order Jacobi polynomial defined by 
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The Jacobi polynomials are orthogonal on the interval [ ]11,−  with respect to the 
weight function ( )βx+1 , 1>β .  Therefore, it is necessary to initially change 
variables so that f  is defined on [ ]11,− : 
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Under this change of variables, f̂ , the Laplace Transform of f  is found by 
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If this expression is evaluated at ( )1++= ks βδ , where k  is an arbitrary positive 
integer, then 
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The term ( )kx+1  can be expressed as a finite sum of Jacobi polynomials.  Using the 
orthogonality of the Jacobi polynomials, the integral on the right can be evaluated 
exactly as a finite sum.  Therefore, by choosing N  different values of k  we can solve 
for 10 −Nc,,c K .  This will provide us with the means to approximate ( )xg  with a 
truncated series of Jacobi polynomials.  Then it is just a matter of inverting the 
change of variables to have an equivalent expression that approximates ( )tf . 
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 The other orthogonal polynomial methods follow similar steps and yield the same 
type of result; a truncated expansion of ( )tf  in terms of the appropriate basis 
functions (after a change of variables).  One advantage of these methods, in general, 
is that the change of variables to the proper domain for the basis functions is never 
unique.  This allows some flexibility by providing a ‘free’ parameter.  In the case of 
Jacobi polynomials, δ  is an adjustable parameter whose only restriction is that it 
must be positive.  We will see that the choice of δ  does have a measurable effect on 
the performance of this method. 

 
 Heaviside Interpolation 
  The Heaviside Interpolation method is carried out in two steps.  First, the 

transformed function, ( )sf̂ , is approximated by a rational function ( )sF̂ .  Second, the 
approximating function is inverted using the Heaviside Expansion Theorem, [4].  We 
presume that ( ) ( )tFtf ≈ , provided that F̂  is an accurate approximation of f̂ . 



  We construct the approximating function, F̂ , by interpolating f̂ .  We will see 
that the accuracy of this approximation depends heavily on our choice of nodes for 
interpolation, Ns,,s,s K21 .  Therefore, our end result (in the time domain) is also 
sensitive to this choice.  At present, we do not have an effective, algorithmic method 
for choosing the nodes that will yield the best approximation to f̂ , and by association 
the best approximation to .f   It does seem reasonable however, that search methods 
would be an effective approach to discovering good, if not optimal, nodes.  (Our 
suspicion is that direct optimization will prove near impossible due to the complicated 
nature of any error valued functional.) 

  We will demonstrate this method on a simple example, to illustrate the process as 
well as indicate the sensitivity of the final result to our choice of nodes.  We begin 
with a statement of the Heaviside Expansion Theorem, [4]. 

 
Theorem:  Let ( )sF̂  be a rational function with the degree of the denominator at least 
one greater than the numerator. 
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 Then we may find a partial fraction decomposition of ( )sF̂  
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 where Ms,,s,s K21  are the zeros of ( )sQ , (not to be confused with the interpolation 

nodes mentioned above), and MN,,N,N K21  are the orders of the associated zeros.  
Furthermore, the Inverse Laplace Transform of  ( )sF̂  is 
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 Proof:  Since ( )sQ  is a polynomial with real coefficients, we will always be able to 

construct a factored form for ( )sQ : 
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 where the ks  are the (possibly complex) roots of ( )sQ  and the kN  are the 

corresponding orders, M,,k K1= .  From this point, construction of the partial 
fraction decomposition is an arithmetic exercise. 

  Inversion of the decomposed ( )sQ  follows from an evaluation of the inversion 
integral.  Since all sums are finite, the linearity of the transform and its inverse allow 



us to examine the inversion of a single representative term.  Therefore, consider the 
following integral 
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 The contour RC  is the Bromwich Contour, and the result follows. 
 Now, to demonstrate the sensitivity of the Heaviside Interpolation method to the 
choice of nodes consider the transform pair 
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If we choose the interpolation nodes 521 521 === s,,s,s K  then the rational 

function that interpolates f̂  is 
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(coefficients have been rounded).  We can invert this F̂  exactly using the Heaviside 
Expansion Theorem 
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Again, coefficients have been rounded.  One quantitative measure of the accuracy of 
this approximation is the Mean Squared Error (MSE).  For this problem, we will use 
the interval [ ]π20, . 
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 This is not such a bad approximation, especially when we consider that we only 
used values of the transform at 5 locations to perform the inversion.  Now, suppose 



we choose 5 different locations to interpolate f̂ : 
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and this can be inverted: 
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This example was chosen because of its sensitivity to the choice of interpolation 
nodes, but it is not a rare example.  Almost any function, in the transform domain, 
that can’t be expressed exactly as a ratio of polynomials will experience a similar 
dependence. 

 
 Dubner, Abate and Crump (DAC) 

 The algorithm attributed to Dubner and Abate was originally derived by applying 
a Finite Fourier Cosine series to approximate the Laplace Inversion integral, [5].  It 
was observed at the time that an alternative approach that would lead to the same 
algorithm was to apply a trapezoid rule approximation to the inversion integral, which 
can be expressed as 
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when one takes into account that the time domain function ( )tf  is real valued and we 
limit our attention to the even, periodic extension of f on some suitably chosen 

interval [ ]T,0 .  The resulting algorithm produced excellent results on 
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0 T, .   

 Later, Crump re-evaluated the approach of Dubner and Abate by loosening the 
restriction on the symmetry of f  and relying merely on the real-valued nature of the 
time domain function, [6].  Therefore, Crump was approximating the integral 
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with a trapezoidal rule.  By choosing the step size 
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This improves the approximation by using the information about the imaginary part 
of f̂ , information that is discarded by Dubner and Abate.  As a result, the interval 
upon which error estimates remain reliable is extended to the interval [ ]T,20 .  This 
improved algorithm has now come to be known as the Dubner, Abate and Crump 
algorithm, or just DAC. 
 

  Performance of Approximation Methods in General 
 
 Now, we will examine how each method performs, in general.  Each will be 
tested on a selection of typical functions and the results will be tabulated.  For each 
method, instances where performance was exceptionally good or bad will be further 
illustrated with plots of the exact inverse and the outcome of the particular 
approximation procedure.  
 As a general measure of performance, we will use the Mean Squared Error (MSE) 
defined as: 
 

( ) ( )[ ]∫ −=
T

approx dttftf
T

MSE
0

21  

 
where ( )tf approx  is the approximation to the exact solution.  
 
 BKL Method 
 The following table summarized the results of the BKL method.  There are two 
deviations in this table from the data in the tables that follow.  First, the intervals 
upon which the approximation was measured.  Using the BKL method we are locked-
in to an interval, determined by the zeros of the Shifted Legendre Polynomials.  We 
could alter the location of these points in the time domain by means of a different 
change of variables (we used tex −= ), but the effort is not justified for a this type of 
quick examination.  Also, in [1], methods for extending the domain of the 
approximation are discussed, but the accuracy will be the same.  The second 
deviation is the calculation of the MSE.  All of the methods that follow produce 
continuous approximations to ( )tf ; the BKL method generates a discrete 
approximation, therefore it seemed more appropriate to use the following measure of 
error: 
 

( )[ ]∑
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−=
N

k
ii ftf

N
MSE
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21  



 
where the it  correspond to the zeros of the Shifted Legendre polynomials and the if  
are the method’s approximations to ( )itf . 

 
 

( )tf  ( )sf̂  Interval MSE Comments
t  

2

1
s

 ( )33940 ., 0.0117 10=N  

2

2t  3

1
s

 ( )33940 ., 0.4662 10=N  

6

3t  4
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s
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1

1
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( )tsin  
1
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2 +s
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( )tcos  
12 +s
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( )tln  ( )( )
s
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( )33940 ., 0.0021 10=N  

 
 Clearly, performance was best on the exponentially damped function and worst on 
the high order polynomials.  One thing about this method that is not clear from this table 
is the relative improvement as N  is increased.  Unlike the methods that follow, there is 
little gained by increasing N .  As an example, consider ( ) ( )tsintf = : 
 

 



 On the left is the 8=N approximation and on the right 15=N .  The higher order 
approximation is only slightly better, with an MSE of 0.00602 as opposed to 0.0072.  
(Note also that the domains are slightly different:  8=N  is on (0,3.919) and 15=N  
is on (0,5.115).) 
 In general, the BKL method performs well when compared to the others but 
suffers from some serious drawbacks.  Chief among its detractors is that to change the 
time domain is a non-trivial exercise – so we are restricted to an approximation on 
one particular interval.  Another, less severe, disadvantage is that all other methods 
generate a continuous approximation; BKL generates a set of points.  In the physical 
application of interest (viscoelastic wave propagation), the stresses are the derivatives 
of the displacement and are often of a greater physical importance.  By using a 
discrete approximation to the displacements we must introduce another level of 
approximation to find the stresses. 
 
 Jacobi Polynomials 
 The following table summarized the results of the Jacobi polynomial method.  It’s 
not surprising that the polynomial method performed very well on inverting 
polynomials.  The exponentially damped function was a surprise. 
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 The poor performance  for the logarithm can be attributed to a general difficulty 
for polynomials to approximate vertical asymptotes.  This causes us no great concern 
since this is outside of the expected behavior of wave propagation. 
 Before we leave the Jacobi polynomials it would be nice to take a closer look at 
how well it works with discontinuities.  Of course, with only 5 terms it is difficult to 
approximate a jump discontinuity; the following plots demonstrate how the method 
can perform, given a few more terms: 
 

 
 
We can see that increasing the order of the approximating polynomial can result in 
unstable results for fairly low values of N . 
 
Heaviside Interpolation 
 At a glance, we can see that the Heaviside Interpolation method is very robust for 
smooth functions.  For several of the chosen transforms the method finds the exact 
inverse. 
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DAC Algorithm 
 When executing the DAC algorithm we found that the advantages of the Dubner 
and Abate method [5] performed equal with the full DAC algorithm.  Therefore, the 
“DA” algorithm was used to generate the inverses in this table. 
 One surprise in this table is the mediocre performance on sinusoids.  It seems 
reasonable, given the Jacobi polynomial method’s excellence with polynomials, that a 
method that finds a truncated Fourier Series would perform well with sines and 
cosines. 

 
( )tf  ( )sf̂  Interval MSE Comments
t  

2

1
s

 ( )10,  410332 −×.  6054.c =  

2

2t  3

1
s

 ( )10,  810432 −×.  6054.c =  

6

3t  4

1
s

 ( )10,  910511 −×.  6054.c =  

te−  
1

1
+s

 ( )10,  0.0194 6054.c =  

( )tsin  
1

1
2 +s

 ( )π20,  0.0243 7330.c =  

( )tcos  
12 +s

s  ( )π20,  0.0184 7330.c =  

( )tln  ( )( )
s

sln+− γ , 

 γ  Euler’s Constant

( )e,20  1.932 84710.c =  

( )tJ 0  
1

1
2 +s

 ( )π40,  0.0376 36650.c =

( )




>
<

=−
11
10

1
t,
t,

tH  
s

e s−

 
( )20,  0.0226 30262.c =

 
One positive note for the “DA” algorithm is the ease with which higher order 
approximations can be computed.  By increasing N  to 128 we can improve the DA 
performance on it’s otherwise worst transform by two orders of magnitude to an MSE 
of 0.02686 (from 1.932 with 16=N ). 
 



 
 
Performance of Approximation Methods on Viscoelastic IBVPs 
 

We will now consider the performance of each of these methods when inverting 
Laplace Transforms arising out of viscoelastic IBVPs.  The physical problem we will 
focus on will be the propagation of a wave through a semi-infinite, homogeneous 
viscoelastic material.  The uniaxial equation of  motion is 
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where σ  is the stress, ρ  the density and u  the displacement.  The body is initially at 
rest and a stress is applied at the free end, 0=x , at 0=t : 
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We will use an hereditary integral formulation for the constitutive law, relating the 
stress and strain: 
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where 
x
u
∂
∂

=ε  is the uniaxial strain, ( )tY  is the relaxation modulus and we have 

assumed that the material is initially unstrained.  The relaxation modulus for several 
materials is summarized in the following table. 
 
 



Type Relaxation Modulus
Pure Elastic Material (solid) ( ) EtY =  (constant) 
Pure Viscous Material (fluid) ( ) ( )ttY ηδ=  
Maxwell Material (fluid) 

( ) η
Et

EetY
−

=  
Voight Material (solid) ( ) ( )tEtY ηδ+=  

 
Regardless of the particular constitutive law, the Laplace Transform (applied to the t -
variable) of the equation of motion gives us the ODE 
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subject to the boundary conditions: 
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,
sdx
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The solution to this BVP is 
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or if we are interested in the stress 
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 After introducing the non-dimensional variables  
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and the non-dimensional stress 
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we can find the following time domain solutions after analytical inversion of the 
Laplace Transform, [7,8,9]. 
 

Material Stress Transform Nondimensional Stress 
Elastic 

( )
s

es,ˆ
sξ

ξΣ
−

=  
( ) ( )ξττξΣ −= H,  

Viscous 
( )

s
es,ˆ

sξ

ξΣ
−

=  ( ) τ
ξ

πτ
τξΣ 4

2

1 −
= e,  

Maxwell 
( )

ss
es,ˆ

ss

+
=

+−

2

2ξ

ξΣ  ( ) ( )ξτξττξΣ
τ

−





 −=

−
HIe, 22

0
2

2
1  

Voight 
( ) s

s

e
s

ss,ˆ +
−+

= 1
2

2

1 ξ
ξΣ ( ) ( ) ( )

















−

−
−= ∫

−−−
− τ

λ
ξ

λττ
ξ

τ

λ
λτ
λλτ

τπ
τξΣ

0

4
22

1
4

2
2

2 deJee,

 
We’ve already seen how each of these methods performs on the purely elastic 
material – BKL outperformed all the others by at least one order of magnitude, 
(although the measurement was made differently).  The following tables summarize 
the performance on the viscous materials, then Maxwell materials. 
 

Performance on Viscous materials 
 

Method MSE Interval Notes 
BKL 5100251 −×.  ( )33940 .,  10=N  

Jacobi polynomials 0.0233 ( )40,  1310 === δβ ,,N  
Heaviside 

Interpolation 
0.003623 ( )100,  js,N j == 5  

DA algorithm 41009 −×.  ( )e,40  8471064 .c,N ==  
 
 

Performance on Maxwell materials 
 

Method MSE Interval Notes 
BKL 41001254 −×.  ( )68640 .,  12=N  

Jacobi polynomials Unreliable ( )40,  1312 === δβ ,,N  
Heaviside 

Interpolation 
061580.  ( )50,  

3
5 js,N j ==  

DA algorithm 0.00142 ( )e,40  8471064 .c,N ==  
 



 
 We can see that there are little surprises, based on experience from the general 
performance of all of these methods.  The Jacobi polynomial method would probably 
be considered least appropriate due to the general difficulty of mimicking non-
polynomial behavior, i.e. approaching a finite limit as ∞→t . 
 One thing that a quick glance at the MSE of each method does not reveal is the 
order of the approximation.  To achieve similar results, the DA algorithm had to use 
64 terms, while the others were between 5 and 12. 
 We did not include performance of the methods for the Voight material.  This is 
primarily due to the difficulty in accurately computing the MSE (the difficulty lies in 
evaluating the exact solution, not the approximations).  The following two graphs 
show the BKL and the Heaviside Interpolation approximations to this problem. 
 

  
 
Both of these exhibit qualitative behavior consistent with the exact solution, [8].  The 
other methods could not achieve this.  The Jacobi polynomials grow too quickly and 
the DA algorithm requires too many terms to be competitive with these methods. 
 

Conclusion 
 

 We have examined four popular methods for inverting Laplace transforms.  First 
on some simple transforms, to get an idea of where each performs well, then applied 
to some wave problems.  We found that the Jacobi polynomial method does well with 
polynomials, which is to be expected, but it’s ultimate behavior for large t  
(polynomial behavior) make it a poor method for bounded functions.  The Heaviside 
Interpolation method works well with functions that decay (such as exponentials), but 
does poorly with discontinuities.  The BKL method appears to be very robust, but 
additional work is needed to extend the time domain of the approximation.  And last, 
the DA (or DAC) algorithm.  It also appears very robust, and even performs relatively 
well on discontinuous functions – a very desirable property when working with wave 
propagation problems. 
 When viscoelastic wave problems are considered, it appears that the BKL and the 
Heaviside Interpolation methods performed best.  Especially when considering the 
more complicated behavior of Voight material.  These were the only methods that 
reproduced the expected behavior with extremely low order approximations.  This 
dependability makes it more than justified to continue to examine ways to adapt each 



of these methods to our purposes.  The BKL method needs to be able to make 
approximations on larger time domains and we need to develop an automated method 
for choosing the nodes of interpolation in the Heaviside method. 
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