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1 Executive Summary

Quantum computers have great theoretical promise in applications of vital in-
terest. However, construction of a useful quantum computer is not yet practical
and faces many technical challenges, such as the need to prevent quantum de-
coherence from corrupting the desired evolution of a quantum spin system.

Khaneja, Brockett and Glaser [5], [6] have described an optimal control
strategy for a nuclear magnetic resonance (NMR) quantum spin system with
two or three spins. Their methods, however, do not apply directly to systems
with more than three spins. We propose to extend their results using differential
geometric methods which can be applied to NMR quantum systems with any
finite number of spins. The need for control of multi-spin systems is also shared
by solid-state methods [1], [9], so this problem has more general application
than a particular physical implementation.

2 Introduction

The possible uses of quantum computation are of great interest to the United
States Army and other branches of government. For example, Shor’s factoring
algorithm for quantum computers [12] finds the prime factors of a compos-
ite number more efficiently than any known algorithm for classical computers.
Since the difficulty of factoring large numbers is crucial to the security of many
encryption schemes, this is an application of vital interest.

Although the theory of quantum computing algorithms is flourishing (see for
example [7], [9]), construction of a useful quantum computer is not yet possible.
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One challenge concerns the difficulty of preventing quantum decoherence from
corrupting the desired evolution of a system. In the only physically realized
scheme to date, nuclear magnetic resonance (NMR), control inputs are mediated
by radio-frequency (rf) pulses, and to avoid decoherence it is desirable to make
these pulse trains as short and efficient as possible.

Two recent papers by Khaneja, Glaser and Brockett [5], [6] reduce the prob-
lem of finding efficient pulse trains for a two-spin or three-spin NMR system to
the problem of finding sub-Riemannian geodesics in a quotient space of SU(4).
However, the methods they use are not scalable to systems with more than three
spins. In this paper we outline a way to extend their results to systems with
more than three spins by using geometric methods that were used in the first
author’s Ph.D. thesis [8] to find sub-Riemannian geodesics of Engel manifolds.

3 NMR spin systems and optimal control

3.1 NMR systems as control systems

In non-relativistic quantum mechanics the state vector |ψ(t) > of a quantum
system at time t is given by

|ψ(t) >= U(t)|ψ(0) > (1)

where |ψ(0) > is the initial state and the unitary propagator U(t) evolves ac-
cording to the time-dependent Schrödinger equation

U̇(t) = − i
~
H(t)U(t) (2)

where U(0) = I (the identity matrix) and H is the Hamiltonian of the sys-
tem [11].

The Hamiltonian for an NMR system can be decomposed as

H = Hd +
m∑

j=1

ujHj (3)

whereHd is the drift Hamiltonian corresponding to internal couplings, the uj are
controls, and the Hj are the rf or control Hamiltonians which can be externally
affected [5]. By (1) and (2) the evolution of a quantum spin system with n spins
can be regarded in terms of the action of a one-parameter subgroup U : R → G
on the space of state vectors |ψ >, where G is the unitary matrix group SU(2n).
The problem of finding the most efficient rf pulse train needed to evolve the
system to a desired state is therefore equivalent to the problem of finding a
time-optimal path from U(0) = I to a desired UF . The control Hamiltonians
Hj can be chosen so that the Lie subalgebra generated by { iHj } is the Lie
algebra of a closed subgroup K ⊂ SU(2n).

As explained in [6], the controls uj can be made so large that the time needed
to transition between two elements UA, UB in the same coset KUA = { kUA :
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k ∈ K } is negligible, i.e., so small that the system hardly evolves under the
internal Hamiltonian Hd in that time. The problem of finding a time-optimal
path between any two elements U1, U2 ∈ G thus reduces to the problem of
finding the shortest path from KU1 to KU2 in the coset space G/K–an optimal
control problem on a homogeneous space.

By equation (3) all admissible motions in G/K are generated by the drift
Hamiltonian Hd. To choose an initial direction in G/K it suffices to select an
appropriate k ∈ K by means of the controls [6]. In practice, at each pointKUα ∈
G/K, only a proper subspace DKUα

of the directions generated by Hd can be
selected by the controls. This constraint might seem to restrict the reachable set
of elements of G/K, but if the vector fields locally spanning the subspaces DKUα

are bracket-generating (see below), a theorem due to Chow [3] guarantees that
every point in G/K can be reached from any given starting point by a piecewise
smooth path determined by the controls. If an inner product is defined smoothly
on the subspaces DKUα

, the space G/K is called a sub-Riemannian manifold,
as defined below. This inner product induces a length functional on the space
of admissible paths, and the critical paths of this functional are called sub-
Riemannian geodesics.

3.2 Sub-Riemannian geometry

The notion of a sub-Riemannian manifold provides a natural setting for control
systems like the one described above.

Definition 1 Let M be a smooth manifold and let D ⊂ TM be a smooth k-
plane field on M , where k ≤ dim M . The nth derived space of D is defined
inductively for n ≥ 0 by

D0 = D

Dn = Dn−1 + [Dn−1, Dn−1] for n ≥ 1

where [ , ] denotes the Lie bracket.

Definition 2 A k-plane field D ⊂ TM is bracket-generating if, given any point
p ∈M , there is an integer n ≥ 0 (which may depend on p) so that Dn

p = TpM .
(This is also known as Hörmander’s condition.)

For many problems in control theory, the time derivative of the state vector
of a system is constrained to lie in a k-plane field D on the state space M . In the
NMR quantum control problem considered here, the state space is M = G/K
and D is the collection of subspaces {DKUα

|KUα ∈ G/K}. When D is bracket-
generating, as it is here, the following theorem of Chow implies that the controls
allow the system to reach any desired endstate from any initial state. First,
another definition is needed.

Definition 3 Let M be a smooth manifold with a smooth k-plane field D ⊂
TM . A curve γ : [a, b] → M is called admissible if, whenever γ̇(t) exists,
γ̇(t) ∈ Dγ(t).
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Theorem 1 (Chow, 1935) Let D ⊂ TM be a smooth k-plane field on a con-
nected manifold M . If D is bracket-generating, then given any two points
p, q ∈ M , there is a piecewise-smooth admissible curve γ : [a, b] → M with
γ(a) = p, γ(b) = q.

Proof. See [3] for a proof. 2

Given a connected manifold M with a bracket-generating k-plane field D ⊂
TM , by Chow’s theorem any two points of M are connected by at least one
admissible curve, so it is of interest to define the length of such a curve. Of
special interest is the case where the length of a vector in D is defined by an
inner product called a sub-Riemannian metric.

Definition 4 Let D ⊂ TM be a k-plane field. A sub-Riemannian metric on D
is an inner product 〈 , 〉 defined smoothly on the fibers of D.

Definition 5 Let M be a connected manifold with a bracket-generating k-plane
field D ⊂ TM equipped with a sub-Riemannian metric 〈 , 〉.

1. The sub-Riemannian length of a smooth admissible curve γ : [a, b] → M
is

L(γ) =
∫ b

a

〈γ̇(t), γ̇(t)〉1/2 dt (4)

If γ is piecewise-smooth, the length of γ is the sum of the lengths of its
smooth segments.

2. Let p, q ∈ M be any two points in M . The sub-Riemannian distance
between p and q is

d(p, q) = inf{L(γ)|γ : [a, b] →M admissible with γ(a) = p, γ(b) = q} (5)

3. The triple (M,D, 〈 , 〉) is called a sub-Riemannian manifold.

If an admissible path γ connecting p and q with L(γ) = d(p, q) exists, γ
is called a sub-Riemannian minimizer. Critical points of (4) are called sub-
Riemannian geodesics. Every sub-Riemannian minimizer is a geodesic, but the
converse is not true; however, every sub-Riemannian geodesic is a local mini-
mizer. Thus searches for minimizers often begin by computing geodesics.

3.3 Optimal control of NMR spin systems

Returning to the quantum control problem above, finding an optimal path be-
tween two elements of the coset spaceG/K amounts to finding a sub-Riemannian
minimizer. In [5] the authors find sub-Riemannian geodesics of SU(4)

SU(2)⊗SU(2) ,
corresponding to the two-spin case (and extended to the three-spin case in [6]).
Their computations take advantage of the fact that SU(4)

SU(2)⊗SU(2) is a Riemannian
symmetric space. However, for systems with a higher number of spins G/K is
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no longer a Riemannian symmetric space [5]. The problem of finding explicit
solutions for time-optimal paths in higher spin systems is still open, and would
benefit from a method that is more generally applicable.

Such a method already exists: the Griffiths formalism, named for the au-
thor of [4]. In [8] the first author employed the Griffiths formalism to find the
equations of sub-Riemannian geodesics on Engel four-manifolds, and found ex-
plicit solutions for sub-Riemannian geodesics on the Lie groups SO(3) × S1,
SEuc(2) × S1, and SO(2, 1) × S1. Roughly speaking, in the Griffiths formal-
ism one finds critical points of constrained variational problems on a manifold
M by lifting the geodesic equations to a covering space defined by the linear
constraints. The constrained variational problem on M is thus lifted to an
unconstrained problem on this covering space and solutions project down to
solutions of the original problem on M . The method does not depend on any
special properties of M , such as whether M is a symmetric space.

We propose to find time-optimal paths for at least one system of more than
three spins, using the Griffiths formalism and other methods from the theory of
exterior differential systems. The symmetries of the homogeneous spaces G/K
may make it possible, as with the Lie groups investigated in [8], to find these
solutions by quadrature, using a generalized form of Noether’s theorem (see
also [2]).

The need for multi-spin control is not confined to NMR quantum comput-
ers, but is shared by a number of solid-state approaches to quantum computer
implementation (such as quantum dots) [1],[9]. Thus this problem is not limited
to just one means of physical implementation.

The dimension of G/K increases rapidly with the number of spins, so this
problem will entail a good deal of computation. The task should be lightened
by a computer algebra system such as Maple 7 but will still be intensive. How-
ever, the goal is worthwhile: we need to find ways to control larger numbers of
spins and solutions to the time-optimal path problem should be of value in this
endeavor.
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