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Outline

• An example of application.
• A method of robust variable selection 

using L2E applied to the example.
• “BLUF”



An Analysis of OneSAF Runs 
• 228 OneSAF (“Semi 

Automated Force”) runs
• 3 situational time slices per 

run
• 429 data points per run        

(143 per time slice)
– Number of K, M/F, F, and M kills
– Ammunition levels
– Number of hits delivered
– Range of hits
– Number of side hits delivered
– Distance to objective
– Number of Blue on objective

• Response Variable: MBT 
Score

• 228x430 data matrix. Company Objective
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An Analysis of OneSAF Runs 
• Battle results are infinite in 

scope, yet the outcome of 
any one battle is defined by 
a finite set of battlefield 
interactions. 

• The goal is to identify battle 
plan evaluation metrics 
based on statistical analyses 
of parameterized combat 
influences.

• Not about “predicting” the 
battle outcome; rather about 
explaining potential scenario 
developments.
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“L2E” Variable Selection 
Applied to143 Variables at the Time Slice 1

• MF3S1: # tanks in P3 that are 
MF’d.

• F3S1:# tanks in P3 that are F’d.
• NKB1S1: # K kills on BMP by P1.
• R05HB2S1: Avg range 105 HEAT 

on BMP by P2
• MF1S1: # tanks in P1 that are 

MF’d.
• N05HB3S1: # hits 105 HEAT on 

BMP by P3.
• N05ST2S1: # hits 105 SABOT on 

T80 by P2.
-51.03N05ST2S1

26.36N05HB3S1

-152.55MF1S1

0.047R05HB2S1

111.64NKB1S1

-108.10F3S1

-127.12MF3S1

584.01Int
L2E CoeffVar



An Analysis of OneSAF Runs 
• What does it mean for 

N05ST2S1 (# hits 105 
SABOT on T80 by P2) to 
have a negative 
coefficient?

• P2 follows behind P1 in 
the layout.

• P2 hitting T80 at the 
time slice 1 means P1 
has been hit hard.
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Variable Selection

• Is an exploratory technique.  
• Recall John Tukey’s distinction between 

exploratory data analysis (EDA) and 
confirmatory data analysis.

• Tests and confidence/prediction intervals 
may not be valid if the same set of data is 
used to select variables in the model.



L2E Regression

• Robust regression method based on L2E 
criterion of Scott (2001).

• For a linear model

where the error term is a normal random 
variable with mean 0 and variance σ2, 
estimate the parameters bi’s and σ2 by 
minimizing
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Why L2E?

• L2E regression has been shown to have 
robustness properties similar to least 
median of squares (LMS) regression and 
other robust estimators.

• The functionals to be minimized in other 
robust methods need sorting of n
residuals, whereas L2E does not.



Comparison of multiple regression 
parameter estimates for L2E vs LS

• No contamination (n=100)

• 20% contamination (n=100)

 b0 b1 b2 b3 b4 σ 

True Values 0 -1 2 -1 2 0.2 

Least Squares Estimates 0.0006 -1.0050 1.9982 -1.0015 2.0020 0.2055 

EL2  Estimates 0.0104 -1.0068 2.0013 -1.0100 2.0022 0.2182 

 

0.21182.0110-1.00052.0137-1.0286-0.0357Estimates

8.652.04010.16791.65000.15920.0139Least Squares Estimates

0.22-12-10True Values

σb4b3b2b1b0

EL2



Toward Robust Variable Selection

• Most of classical variable selection 
methods available today are based on LS 
regression.

• Can we come up with a variable selection 
method that is not easily influenced by 
outliers and other data contamination?

• One of the criticisms of many variable 
selection schemes: the selected models 
often depend on the influential 
observations.



Example
• Simulated data set of 100 points using the 

model y=3-x2+4x3-7x4 (with σ=.2).
• We want to look at how σest and L2Eest vary 

across different subsets of explanatory 
variables.

9.982-.0297x4

18.52-.0164x3

16.86-.0168x2

18.19-.0159x1

σestL2EestExp var



Example (cont’d)
• Simulated data set of 100 points using the model 

y=3-x2+4x3-7x4 (with σ=.2).
• We want to look at how σest and L2Eest vary 

across different subsets of explanatory 
variables.

2.69-.1114x3 ,x4

9.87-.0304x2 ,x4

9.86-.0299x1 ,x4

σestL2EestExp var

0.19-1.419x2 , x3 ,x4

9.80-.0305x1 , x3 ,x4

σestL2EestExp var



Heuristic Variable Selection 
(suggested by the prev. example)

• Choose the variable that gives the smallest L2E and/or σ
at each forward selection step, and stop when adding 
any of the remaining variable gives no improvement.

• The correct models were arrived at in many different 
models and at reasonable contamination levels.

• Interesting result: When the contamination level goes up, 
adding a redundant variable usually results in increase of 
L2E and σ!

• The following table shows that what happens to the 
previous example when we have 20% contamination.

0.19-1.000x2 , x3 ,x4

6.73-.0557x1 , x2, x3 ,x4

σL2EExp var



Ongoing and Future Work

• Developing the criteria analogous to AIC 
and others.

• Robust F ratio?
• Continuing applications to combat 

simulation data.


