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Quantum Computers:

use ‘qubits’ instead of classical bits

qubits can be built from quantum spin systems

actual implementation is difficult

potential rewards are great




Shor (1997): algorithm for prime factorization on a quantum

computer
e much more efficient than any known classical algorithm

e many encryption schemes rely on difficulty of factoring large

numbers




Quantum Spin Systems

state vector evolves in accordance with quantum mechanics

desired evolution of a system can be corrupted by quantum
decoherence

only operational physical implementation to date: NMR spin
system

strategy: find optimal paths in state space to minimize

decoherence




Control of NMR spin systems

e Khaneja, Brockett and Glaser (2001): control problem reduces

to finding sub-Riemannian geodesics on state space

e we propose a method for extending their solution to systems
with n > 3 qubits




Quantum Mechanics Background

The state vector |¢(t) > of a quantum system with n qubits is
given by

[$(t) >= U(t)](0) >
where |1(0) > is the initial state and U(t) € SU(2™) evolves
according to the time dependent Schrodinger equation

0(t) = 7 HHU ()

H is called the Hamiltonian of the system.




The Hamiltonian of an NMR system can be decomposed as

H=Hy+» ujH, (3)

j=1

where H, is the drift Hamiltonian (internal couplings), the u; are

controls and the H; are the rf or control Hamiltonians.

The control Hamiltonians can be chosen so that the {¢H;} generate
the Lie algebra of a closed Lie subgroup K C SU(2").




H=Hy+ ) ujH,

j=1

The controls u; can be made so large that the time needed to

transition between two elements Uy, Up in the same coset
KUA:{kUAZkEK}

is negligible; i.e. too small for the system to evolve substantially
under the drift Hamiltonian Hy.

The optimal control problem is therefore:

find the shortest path between cosets in SU(2")/K.




Khaneja et al showed (in the two-qubit case) that this is equivalent
to finding sub-Riemannian geodesics on SU(4)/(SU(2) @ SU(2)).
The methods they used for finding these geodesics took advantage
of the fact that SU(4)/(SU(2) ® SU(2)) is a symmetric space, but

this is not true for the state space in the general case.

Thus the problem would benefit from application of a method that
is more generally applicable.




Brief synopsis of sub-Riemannian geometry

In NMR systems only a sub-bundle D of the tangent bundle T'M of
the state space M = SU(2™)/(SU(2) @ ... ® SU(2)) is accessible.

A smooth inner product (, ) on D is called a sub-Riemannian
metric. Admissible paths v : [a,b] — M that minimize the length

functional

L(v) = / (8, 5(0)/? dt (4

are sub-Riemannian geodesics.




Griffiths formalism for constrained optimization

Let X = D x R and let ¢ be the 1-form

6= S () + ()2 di

on X. Let Z C T*X be the submanifold defined by
z= | z

where Z, = {¢(x) + [, C T X}, and [ is the defining coframing of
D lifted to X.
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Griffiths formalism, cont’d

The constrained variational problem on the state space M is thus

lifted to an unconstrained variational problem on Z.

The integral curves of the Cartan system of the canonical

symplectic 2-form on Z project to regular sub-Riemannian

geodesics on the state space M.




Griffiths formalism, cont’d

This method was used by the first author in his Ph.D. thesis to find

sub-Riemannian geodesics on Engel 4-manifolds. In particular, he
found explicit equations for Engel systems on the Lie groups
SO(3) x S1, SEuc(2) x S, and SO(2,1) x S1.




e Advantages:

— applicable to quantum control problems with any finite

number of spins

— first author has applied it in the 4-dimensional case already

e Disadvantages: number of differential equations becomes

rapidly larger as the number of spins increases




it is possible to extend Khaneja et al’s results, with the help of
differential geometric methods as outlined above.

it will take a good deal of work

the possible rewards are worthwhile, since control of substantial

numbers of spin-based qubits is required for useful quantum

information processing




