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Abstract
The classical Wiener filter lies at the heart of many engineering problems involving the filtering

of noise in digital signals. These problems can be interpreted in the context of linear prediction of
sequences of random variables; the problem becomes that of minimizing the noise variance. The least
mean square (LMS) algorithm is an approach to noise cancellation which is based on the Wiener filter
and is used when the noise statistics are either unknown or changing over time, as is usually the case
in applications. Given a sequence of random variables, there is an associated sequence of polynomials
which are orthogonal with respect to distributions on the unit circle which are related to the noise
process. In the above context, the polynomial coefficients of are equal to the weights of a Wiener filter.
We describe this connection and state some results about the asymptotic behavior of the polynomials
with respect to sequences of distributions.
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1 Introduction

A class of adaptive filtering techniques for noise cancellation, the least-mean-square (LMS) and adaptive
prediction algorithms, and their variants, is based on the classical Wiener filter [18], which can be viewed
as is a linear operator on stationary time series. Adaptive methods are used when the noise statistics
are unknown or non-stationary [3, 16].

Suppose that
x(n) = α(n) + s(n); n = 1, 2, 3, ..., (1)

is a discrete-time stationary signal, where s(n), is a signal of interest and α(n) is a stationary noise
process which is uncorrelated with s(n). As discussed in [10], given a noise reference, y(n), which is
correlated with α(n) but uncorrelated with s(n), the problem of noise cancellation in the signal x(n)



can be viewed in the context of linear prediction. Let w := [w1, w2, ..., wk] be a vector of filter weights
and yn := [y(n), y(n− 1), ..., y(n− k + 1)]. The linear combination

k−1∑
j=0

wk+1y(n− j) = wy′n, (2)

which gives the best “predictor” of x(n), in the least-squares sense, minimizes the square error

E(s(n)2) + E [(α(n)− (wy′))2], (3)

where E is the expectation operator, with α(n), s(n), and y(n) interpreted as a realization of sequences
of random variables. The optimal filter weights are given by the Wiener-Hopf equations

wopt = M−1
yy Pxy (4)

where M−1
yy denotes the covariance matrix,

Myy(i− j) := E(y(n+ i)y(n+ j)),

and Pxy denotes the vector of cross-correlations,

Pxy = E([x(n)y(n), x(n)y(n− 1), x(n)y(n− 2), ..., x(n)y(n− k + 1)]).

As discussed in [9], the adaptive prediction algorithm, which is effective with broadband noise, uses
a variant of (2), where a linear combination of past samples

m+k−1∑
j=m

wj−m+1x(n− j) (5)

is used to predict x(n) for m ≥ 1. A noise reference is not used in this case; rather, this technique relies
on the de-correlation of broadband components over time. In the case where α(n) is gaussian white
noise, for example, it is sufficient to let m = 1 in (5) [19]. Equations (3) and (4) become

E [(x(n)−
k∑

j=1

wjx(n− j))2], (6)

wopt = M−1
xx E([x(n)x(n− 1), x(n)x(n− 2), ..., x(n)x(n− k)]). (7)

If the process x(n) is not completely deterministic, the matrix Mxx will be positive definite, that is,
a′Mxxa > 0 for any vector a of length k. It follows that, for any k, Mxx defines an inner product on
the space of vectors of length k:

< a,a >:= aMxxa′.

It follows that with the above inner product, a Hilbert space isomorphism exists between the vector
space of dimension k + 1 and the square-integrable functions on the unit circle in the complex plane
with respect to a certain distribution µ(θ) on [−π, π). (See, for example, [1] for details.) With f(z) =
a0z

k + a1z
k−1 + ...+ akz + ak and g(z) = b0z

k + b1z
k−1 + ...+ bkz + bk we have

< a,b >=
1
2π

∫ π

−π

f(eiθ)g(eiθ) dµ(θ). (8)

The distribution µ is called the spectral density of the process x(n), and contains information about the
spectral content. The Fourier coefficients of µ are the elements of the matrix Mxx. We have

µ̂(`) :=
1
2π

∫
e−i`θdµ(θ) = E(x(n+ i)x(n+ j)). (9)



More generally, we will refer to µ as a measure, which will allow for singular components where a density
does not exist. For example, if x(n) consists solely of a sinusoidal signal with normalized frequency ω
cycles/sample, µ is the point mass, or delta-function at the frequency ω. On the other hand, if x(n) is
a white noise, µ is the uniform density on [−π, π).

In this context, (6) becomes

1
2π

∫ π

−π

∣∣∣∣∣∣eikθ −
k∑

j=1

wje
ijθ

∣∣∣∣∣∣
2

dµ(θ). (10)

It follows that the polynomial which minimizes (10) is zk +
∑k

j=1 wjz
j , where the coefficients, wj

are given in (7). This polynomial is called the Szegö polynomial of degree k with respect to the measure
µ, which we will denote Pk(z, µ). We define the prediction error power as the minimum in(10),

ρk(µ) :=
1
2π

∫ π

−π

|Pk(eiθ, µ)|2 dµ. (11)

Szegö polynomials form the basis for autoregressive methods in digital filtering and spectral analysis
[3, 6]. For example, the measure µ can be estimated by the density 1

2π |Pk(eiθ, µ)|−2. Szegö polynomials
are also used as frequency estimates. If x(n) consists of m < k sinusoids with frequencies ωj , with
additive noise, one would expect m of the zeros of Pk(z, µ) to be close to the eiθj , in order that the
minimum in (10) is attained.

In [10] an approach is described presented where the frequencies of sinusoidal components of x(n)
which result from vehicle self-noise are estimated, then cancelled from the signal. In this paper we
present some results about the behavior of the polynomial zeros which are used as estimates, with
respect to measures µh, which converge in the weak-star topology on measures to a sum of point
masses,

lim
h→0

µh = µδ :=
m∑

j=1

αjδθj weak− star (12)

where h > 0 is a discrete or continuous parameter, the αj are arbitrary complex numbers, and δθj is
the point mass at θj . Weak-star convergence can be characterized as follows. We have

lim
h→0

µh = µ weak− star

if and only if

lim
h→0

µh

∫ π

−π

f(θ)dµh(θ) =
∫ π

−π

f(θ)dµ(θ)

for all continuous f on [−π, π). As we shall see, such measures arise naturally when forming estimates
from the samples x(n).

In general, the corresponding limit
lim
h→0

Pk(z, µh) (13)

need not exist for fixed k > m. Indeed, it is shown by example in [8] that even strong convergence of
µh does not guarantee convergence of Pk(z, µh). On the other hand, any limit point of{Pk(z, µh)}h has
m zeros at the eiθj . We prove existence of the limit (13) for a general class of measures for which (12)
holds, and characterize this limit explicitly for two cases: when µh is formed by convolving µδ with the
Poisson kernel, and when µh is formed by adding to µδ an absolutely continuous measure.

In the last decade, several papers have appeared which address the asymptotic behavior of Szegö
polynomials, with respect to measures for which a special case of (12) holds, in the context of frequency
estimation [4, 5, 12, 13, 14, 15]. It is shown in [4] that (12) holds for the periodogram, ψN , of N samples



of a real trigonometric signal. Specifically, if x(n) =
∑M

j=−M βje
inθj , where β−j = βj and θj = θ−j ,

and ψN (θ) = 1
2πN |

∑N−1
k=0 x(k)e−ikθ|2, then we have the weak-star limit

lim
N→∞

ψN =
M∑

j=−M

|βj |2δθj . (14)

It is shown by example in [15] that Pk(z,NψN ) do not, in general, converge as N →∞ for k > 2M +1.
The behavior of the k−2M−1 “extraneous zeros”, those that do not approach signal locations, has been
one area of interest. In [15] it is shown that the extraneous zeros of any limit point of {Pk(z, ψN )}N

(note that Pk(z,NψN ) = Pk(z, ψN )) lie strictly inside the open unit disk. It would thus seem feasible
to distinguish signal zeros from extraneous zeros, for large N , as those of largest modulus1.

The problem of non-uniqueness of polynomial limits is addressed in [5, 12, 14] by modifying the
measures ψN of [15], in such a way as to ensure convergence of the Pk(z, ψN ). In the R-process [5]
and the V-process [14], the `th moment, 1

N ψ̂N (`) is multiplied, respectively, by r|`| and r`2 , which are
recognized as the moments of the Poisson kernel and the wrapped Gaussian. Limits are taken, first as
N → ∞, then as r ↑ 1. By weak-star convergence (14), we see that N = ∞, r < 1 corresponds to
convolution of point masses with these two approximate identities. Thus, the characterization of the
limit polynomial of the R-process will follow as a special case of our results here.

We also briefly consider the behavior as k →∞ of the constant terms, or reflection coefficients

Rk(µ) := Pk(0, µ), (15)

which give information about the region of accumulation of the extraneous zeros. We apply our results
and a result in [11] to find limk→∞ limh→0 Pk(0, µh) for the case where m = 2 and µh is formed by
convolution with the Poisson kernel. A result in [13] is seen as a special case.

Szegö polynomials can be characterized by the following orthogonality property.∫ π

−π

Pk(eiθ, µ) p(eiθ) dµ(θ) = 0 (16)

for any polynomial p of degree less than k. If µ is supported on strictly greater than k points, the zeros
of Pk(z, µ) lie in the open unit disk; this is the minimum phase property [6], and is a special case of
Fejér’s Convex Hull Theorem.

We also have the well-known representation [1]

Pk(z, µ) =
Dk(z, µ)
Dk−1(µ)

. (17)

where

Dn(z, µ) :=

∣∣∣∣∣∣∣∣∣∣∣

µ̂(0) µ̂(1) . . . µ̂(n)
µ̂(−1) µ̂(0) . . . µ̂(n− 1)
...

...
. . .

...
µ̂(−n+ 1) µ̂(−n+ 2) . . . µ̂(1)
1 z . . . zn

∣∣∣∣∣∣∣∣∣∣∣
, (18)

and

Dn(µ) :=

∣∣∣∣∣∣∣∣∣
µ̂(0) µ̂(1) . . . µ̂(n− 1)
µ̂(−1) µ̂(0) . . . µ̂(n− 1)
...

...
. . .

...
µ̂(−n+ 1) µ̂(−n+ 2) . . . µ̂(0)

∣∣∣∣∣∣∣∣∣ . (19)

1If the polynomial sequence has an infinite number of limit points, the zeros of which accumulate near the unit circle,
it may not be possible to make this distinction. This possibility has not been excluded in the literature.



The Pk(z, µ) can also be computed using Levinson’s recursion [1]:

Pk+1(z, µ) = zPk(z, µ) +Rk(µ)P ∗k (z, µ), (20)

where, for a polynomial p(z), of degree k, p∗(z) denotes the reverse polynomial: p∗(z) := zkp(1/z). The
zeros of p∗ are obtained from those of p by reflection in the unit circle.

The proofs of the results in this paper can be found in [8].

2 Preliminary Results

In this section we give results concerning the existence of limits and rates of convergence of Szegö
polynomials for a general class of weakly convergent measures. An important similarity which exists
between the measures we will consider and the measures ψN of (14) is that both give rise to reflection
coefficients which are uniformly bounded away from (inside) the unit circle, and subsequently, that
extraneous zeros of limit polynomials lie strictly inside the unit circle. In establishing these results
here, we adapt some of the arguments of [15].

Suppose that a h > 0 is either a continuous or discrete parameter and {µh} is a family of absolutely
continuous measures on [−π, π) for which the weak-star convergence (12) holds. Note that an absolutely
continuous family cannot converge strongly (i.e., in total variation norm) to a sum of point masses. Both
numerator and denominator in the expression for Pk(z, µδ), as defined by (17) are zero for k > m, thus
Pk(z, µδ) is not well defined. On the other hand, it follows from the minimum phase property that the
monic family {Pk(z, µh)} is uniformly bounded, and thus contains limit points.

Proposition 2.1 Suppose (12) holds for a family of absolutely continuous measures µh. Then for
k ≥ m all the limit points of {Pk(z, µh)}, as h→ 0, are of the form

Q(z)
m∏

j=1

(z − eiθj ), (21)

where Q is a monic polynomial of degree k −m with all zeros in |z| ≤ 1.

If the reflection coefficients, Rk(µh), are bounded in modulus uniformly away from (inside) the unit
circle, it can be shown that the zeros of any limit factor, Q, of Proposition 2.1, will lie strictly inside the
open unit disk. This is shown in the proof of Theorem 2.4 of [15] for point masses associated with real
signals. The proof is readily adapted for the complex case. See [8] for details. We have the following.

Proposition 2.2 Suppose that for k > m and h > 0 the reflection coefficients for a family of absolutely
continuous measures µh satisfy

|Rk(µh)| ≤ c < 1. (22)

for some constant c. Then the zeros of any limit factor Q, in (21), are strictly less than one in modulus.

We wish to consider measures whose moments can be expanded as a power series about h = 0.
This property, which ensures convergence of Pk(z, µh), holds for the Poisson kernel and the wrapped
Gaussian, and thus for the underlying measures of the R- and V- processes of [5, 14].

Proposition 2.3 Suppose (12) holds for a family of absolutely continuous measures, µh and suppose
that for each `, µ̂h(`) has a power series representation about h = 0. Then for k > m there exists a
monic polynomial, Q, of degree k −m such that

lim
h→0

Pk(z, µh) =: Pk(z) = Q(z)
m∏

j=1

(z − eiθj ). (23)



Assuming (23) holds we can write

Pk(z, µh) = Qh(z)
m∏

j=1

(z − w
(h)
j ), (24)

where, without loss of generality, w(h)
j → eiθj for j = 1, 2, ...,m, and Qh(z) converges to a monic

polynomial Q(z) of degree k −m as h→ 0.
The following two results are analogs of equation (2.4) and Corollary 2.3 [15], respectively.

Corollary 2.1 Suppose that the moments, µ̂h(`), of a family of absolutely continuous measures satis-
fying (12), have power series representations about h = 0. Then there exists a constant c > 0, such
that, for k > m

|Pk(z, µh)− Pk(z)| ≤ ch, (25)

where Pk is defined in (23).

Corollary 2.2 Suppose that for a family of absolutely continuous measures satisfying (12) with the θj

distinct, the µ̂h(`) have power series representations about h = 0 and the reflection coefficients satisfy
(22). Then there exist constants, Kj, for j = 1, 2, ...,m, such that

|w(h)
j − eiθj | ≤ Kjh, (26)

where w(h)
j are defined in (24).

3 Convolution with Poisson Kernel

One way to construct measures µh for which (12) holds is to convolve point mass measures with
an approximate identity. For a discussion of approximate identities and their properties see [2]. In
particular, denote by ψr(θ) the Poisson kernel:

ψr(θ) :=
1− r2

|eiθ − r|2
, θ ∈ [−π, π), 0 < r < 1, (27)

and define

µr := ψr ∗
m∑

j=1

αjδθj , (28)

where αj > 0 and θj ∈ [−π, π) distinct for j = 1, 2, ...,m. We can express the convolution (28) as

dµr(θ) = (1− r2)
m∑

j=1

αj

|ζ − reiθj |2
dθ (29)

= (1− r2)

∑m
j=1 αjΠm

p6=j |ζ − reiθp |2

Πm
j=1|ζ − reiθj |2

dθ, (30)

where, for notational brevity, we henceforth define

ζ := eiθ.

Since ψ̂r(`) = r|`|, the moments µ̂r are polynomial functions of h = 1 − r, by Proposition 2.3,
limr→1 Pk(z, µr) exists and (24) becomes

Pk(z, µr) = Qr(z)
m∏

j=1

(z − w
(r)
j ), (31)



where w(r)
j → eiθj for j = 1, 2, ...m and limr→1Qr(z) is a monic polynomial of degree k −m.

It can be shown, using the lines of argument of Lemmas 3.2 and 3.3 of [15], that (22) holds for the
measures µr. The details, which are similar, are omitted.

Lemma 3.1 Let µr be given in (28). Then the reflection coefficients satisfy

|Rk(µr)| ≤
(

1− 1
4m−1

)1/2

. (32)

Outline of Proof: Define Xj(z) := 1

(z−reiθj )
, for j = 1, 2, ...,m. Using (29), the prediction error power

(11) can then be written

ρk(µr) =
(1− r2)

2π

m∑
j=1

αj

∫ π

−π

|Pk(ζ, µr)|2|Xj(ζ)|2 dθ (33)

=
(1− r2)

2π

m∑
j=1

αj

∫ π

−π

|P ∗k (ζ, µr)|2|X∗
j (ζ)|2 dθ, (34)

where P ∗k and X∗
j are formed by replacing a factor z − a with 1− za. (P ∗k is the reverse polynomial for

Pk.) From subharmonicity of P ∗k and X∗
j we have

∫
|P ∗k (ζ, µr)|2|X∗

j (ζ)|2 dθ ≥ 1. From (11) and (30) it
follows that

ρk,r ≤
1
2π

∫ π

−π

|ζk−m|2Πm
j=1|ζ − reiθj |2 dµr ≤

4m−1(1− r2)
2π

m∑
j=1

αj .

These estimates with (33) and (34) now give

1− r2

2π

m∑
j=1

αj ≤ ρk(µr) ≤
4m−1(1− r2)

2π

m∑
j=1

αj . (35)

This, and the relation [1] |Rk+1(µr)|2 = 1− ρk(µr)/ρk+1(µr), now give (32).
The rate of convergence of signal zeros now follows from Lemma 3.1 and Corollary 2.2.

Corollary 3.1 Let w(r)
j be given in (31) and µr defined in (28) where the θj are distinct. Then there

exist constants Kj, for j = 1, 2, ...,m, such that

|w(r)
j − eiθj | ≤ Kj(1− r). (36)

We will need one more result before characterizing the limit in (23) for the measures µr.

Lemma 3.2 Let w(r)
j satisfy (36) for constants Kj, j = 1, 2, ...,m. The function

∏m
j=1

ζ−w
(r)
j

ζ−reiθj
converges

to 1 in L1[−π, π] as r → 1.

The following is the main result of this paper.

Theorem 3.1 Let µr be given in (28). Then

lim
r→1

Pk(z, µr) = Pk−m(z, ν)
m∏

j=1

(z − eiθj ), (37)



where ν is the absolutely continuous measure with

dν

dθ
=

m∑
j=1

Πm
p6=jαj |ζ − eiθp |2. (38)

We remark that the assumption that the θj are distinct is crucial; it is used in the proof of Corollary
2.2, upon which Lemma 3.1, the key idea in the proof of Theorem 3.1, depends.

In light of the remarks in Section 1, we see that the R-process of [5] is equivalent to taking the limit
on the left-hand side of (37), where µδ is the measure on the right-hand side of (14), with αj = α−j and
θj = −θ−j ; that is, for point masses associated with real sinusoidal signals. The strength of Theorem
3.1 is that it characterizes this limit for a general class of measures µδ.
Reflection coefficients; m = 2, k →∞.

We consider the density ν of Theorem 3.1 in light of results in [11] concerning the limit of the
reflection coefficients and zero-distribution measures of Szegö polynomials with degree k → ∞. For
m = 2, the density is easily factored as the squared modulus of a linear function. Results in [11] are
used to interpret in [13].

With m = 2, the measure µr in (28) becomes

µr = (α1δθ1 + α2δθ2) ∗ ψr. (39)

We will assume without loss of generality that θ1 = 0 and define ω := θ2, α1 := α ∈ (0, 1), and
α2 = 1− α. We then consider

µr = (αδ0 + (1− α)δω) ∗ ψr.

The density ν defined in (38) becomes ν dθ = α|ζ − eiω|2 + (1−α)|ζ − 1|2 dθ. The spectral factorization
[1, 6] is easily found as

dν/dθ = c|ζ − v0|2. (40)

where c is a positive constant and

v0 =
1±

√
2α(1− cosω)(1− α)
1− α+ αe−iω

. (41)

Specifying that |v0| ≤ 1 gives

v0 =
1−

√
2α(1− cosω)(1− α)
1− α+ αe−iω

. (42)

In [11] it is shown that for densities of the form dν = c
∏m−1

j=1 |(ζ−vj)|2 (where without loss of generality,
[2] |vj | ≤ 1), that if the vj are distinct and there is a unique vj of maximum modulus, then

s := lim
k→∞

|Rk(ν)|1/k = max
j
{|vj |}. (43)

It is further shown in [11] that the zero-distribution measure measures, 1
k

∑k
j=1 δwj

, consisting of point
masses of weight 1/k at each of the zeros, w1, w2, ..., wk, of Pk(z, ν), converge in the weak-star sense to
the uniform measure on the circle of radius s.

Note that Theorem 3.1 gives the convergence

lim
r→1

|Rk(µr)| = |Rk−m(ν)|. (44)

In the present context, (43) becomes

lim
k→∞

|Rk(ν)|1/k =
1−

√
2α(1− cosω)(1− α)√

1 + 2(1− α)2(1− cosω)
. (45)



A result of Petersen is seen as a special case of (45). In light of the remarks following Theorem 3.1,
equation (2.16) [13] can be written

lim
k→∞

lim
r→1

|Rk(µr)|1/(k−2) =
| cosω|

1 + sinω
, (46)

where
µr = ψr ∗ (

1
2
δω +

1
2
δ−ω).

With (44), (46) is equivalent to

lim
k→∞

|Rk(ν)|1/k =
| cosω|

1 + sinω
. (47)

This is readily seen as a rotation of (45) for the case α = 1/2. Letting θ1 = ω, and θ2 = −ω in (39),
(42) becomes v0 = 1−2(sin ω)

√
α−α2

eiω−2iα sin ω . So with α = 1/2, eq. (45) becomes limk→∞ |Rk|1/k = 1−sin ω√
1−sin2 ω

=
1−sin ω
| cos ω| , which, if we define v0|ω=π/2 = 0, is equivalent to (47).
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