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1 Executive Summary 
 
We present an alternative way of fitting a binary response regression model using David Scott’s 
L2E criterion.  Application of the L2E criterion to estimation of the mean of independent and 
identically distributed (iid) Bernoulli random variables leads to the sensible closed form solution.  
Then we argue how the L2E criterion for iid case may be adapted to a non-trivial binary 
response regression model.   The values of the parameters estimated from the L2E criterion agree 
with maximum likelihood estimates.    
 
2 Introduction 
 
Much of statistical modeling seeks the relationship between explanatory and response variables.   
When a single response variable is of continuous kind, a simple linear regression model is often 
used to examine the relationship between a single explanatory variable and a continuous 
response variable. When there are several explanatory variables, multiple regression models are 
used. There are, however, many cases where the response is not of continuous kind. Instead, the 
response is simply a designation of one of two possible outcomes, a binary response, e.g., 
success or failure, head or tail, 1 or 0.  A binary response regression model is an umbrella term 
that includes logistic, probit, and other regression models that have been developed to explore 
the relationship between a binary response variable and one or more explanatory variables.    

Simple linear regression and multiple regression models may be considered in terms of 
classical linear models: 
 

,eXY += β            (1) 
 
where Y is a column vector of dimension n; X an n by (k+1) matrix; β the vector of k+1 
dimensions; and e is the n dimensional vector of errors, which are usually taken as independent 
and identically distributed Gaussian random variables.  Clearly, β is the vector of the coefficients 
in a multiple regression model with k explanatory variables.  In addition, we see that polynomial 
regression models may also be expressed using Eq. (1) by setting 
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210 , for example. 
The extension of a classical linear model to more general settings that encompass the 

binary response variables (among other things) is called a generalized linear model.   First note 
that we may rewrite Eq. (1) as 
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If Y is a vector of binary outcomes, its expected values will range between 0 and 1.  The linear 
part of Eq. (3) will range over the entire real line.  We may maintain the linearity of the model 
over the parameters by one-to-one transforming the expected values onto the entire real line 
using a link function 
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where X[i,] is the ith row of the design matrix X.  Such a model is called a generalized linear 
model.  Using the identity function as the link, µµ =)(g , we get the classical linear models.  

Logistic regression models are obtained when we use the logistic link, ⎟⎟
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probit models are obtained when we use the probit link, where the link function is the inverse 
cumulative distribution function of a Gaussian random variable with mean 0 and standard 
deviation 1.  The estimation of the parameters is usually done by maximum likelihood which 
leads to iterated numerical procedure. [1] 

Logistic regression models have several useful properties which explain its wide 
popularity.  First, there is a useful interpretation of the regression coefficients in a logistic model 
as the change in log odds.  Second, the differences on the logistic scale may be estimated 
whether the data are sampled prospectively or retrospectively, that is, before the fact or after the 
fact, so to speak—this is property of the logistic link function not shared by other link functions 
[1]. 
 
3 L2E for iid Bernoulli Data 
 
David Scott [2] proposed minimizing the integrated squared error as an encompassing paradigm 
in which a large variety of simple and complex parametric models can be built with robustness.  
On a space of square integrable functions, the integrated square error (ISE) 
 



∫ −= dxxfxfISE 2)]()(ˆ[ ,         (5) 
 
where )(xf  is the true (and usually unknown) underlying probability density function (pdf) 
and )(ˆ xf  is a nonparametric estimator of )(xf , is a time tested optimality measure in 
nonparametric curve estimation, for example, as a starting point in development of least squares 
cross validation algorithm of Bowman [3] and Rudemo [4].  An attractive property of ISE is that 
an equivalent functional to be minimized can be written empirically (based on iid observations 

nxx ,...1 ) as--calling the equivalent functional L2E 
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The minimization of this functional is done over a suitable class of functions.  Scott [2] 

shows this criterion can be used in parametric settings if the minimization is done over a 
parametric family, and the resulting estimators have robustness properties that are known to be 
possessed by the class of minimum distance estimators.  For discrete data, y1,…, yn, iid p(y), Eq. 
(6) becomes 
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where )(ˆ yp  is the estimated probability mass function (pmf).   

Minimizing the functional given in Eq. (7) for binary data gives us a nice closed form 
solution.  To see this, let Y1,…,Yn be iid Bernoulli random variables and y1,…,yn be the observed 
values.  For a Bernoulli random variable, we have 
 

yyyp −−= 1)1()( ππ  
 
for y=0, 1.  Let π̂  be the estimated probability, then Eq. (7) becomes 
 

.)ˆ1(ˆ2)ˆ1(ˆ2 1

1

222 ii y
n

i

y

y

yy

n
EL −

=

− −−−= ∑∑ ππππ       (8) 

 
This can be simplified by noting that the terms in the second summation over the observed 
values are either π̂  or π̂1−  for yi=1 or 0, respectively.  Letting n1 be the number of 1’s 
observed, we have  
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which further simplifies to 
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Taking the derivative with respect toπ̂ , we get 
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Thus the L2E functional in Eq. (10) takes its minimum at
n
n1ˆ =π , which gives an eminently 

sensible closed form solution as the L2E estimate of the binomial success probability.  
 
3 L2E for the Binary Response Regression 
 
In many situations where L2E criteria have been successfully implemented, an iid structure in 
the observed data, whether directly or indirectly through the assumptions on the random 
components, was a necessity so as to enable us to use the empirical estimate of the expected 
value of the estimated pdf or pmf.  In the setting of a generalized linear model for a binary 
response, no such iid structure seems to be present.  To see this, we note that, in 
general, )(~ ii BerY π , i=1, …, n, for the response variable in a binary response regression model 
and except for a trivial (or null) model nπππ === L21 , the probability distributions for the 
response will not be identical. 
 The approach we propose here may be motivated by a spirit similar to what motivates the 
least squares method.   In a least squares curve fitting, the sum of the squared distances between 
the different data points and the putative curve is minimized.  Since L2E functional itself is 
derived from the square of a distance measure, albeit in a more abstract space of pdf/pmf’s, we 
may try forming a sum of the squared distances between the different data points and the curve 
that describes varying response probabilities using L2E’s.  Let D2

i be the square of the L2 
distance between the true pmf πi and the estimated pmf iπ̂ .  Thus we have 
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where l2ei denotes the terms that depend on the estimated pmf iπ̂  and that may be empirically 
estimated by an L2E functional.  Minimizing the sum of D2

i s with respect to the parameters in 
the estimated pmf iπ̂  is precisely equivalent to minimizing the sum of l2ei’s since the last terms 
in Eq. (12) do not depend upon iπ̂  and hence may safely be dropped in search of the values of 

iπ̂ ’s that minimize the sum of the squared distances.   This motivates us to use the sum of L2E’s 
given in Eq. (10) with appropriate additions of indices, 
 

[ ]∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−+−=Λ

n

i
iiiii

i
ii nnnn

n1
11

2 ˆ)2(2ˆ2ˆ21 πππ        (13) 

 



as the criterion to be minimized in L2E modeling of a binary response variable.  In the trivial 
null model: nπππ === L21 , with independent observations Y1,…,Yn, the minimization of the 

L2E criterion in Eq. (13) again yields the estimate 
n
n1ˆ =π , further demonstrating this particular 

L2E criterion for the binary response is a sensible one. 
 For the logistic model, 
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the L2E criterion to be minimized is given by substituting  
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into Eq. (13).   We will now present results of several simulations that compare L2E estimates 
with maximum likelihood estimates (MLE). 
  
Example 1: On each of 20 points, x=0.2, 0.4,…, 4.0, we simulated a binary response 

Y~Ber(π(x)) where 
)22exp(1

)22exp()(
x

xx
+−+

+−
=π .  There were five replications on each x, giving us 

total of 100 data points for each simulated data sets.  100 such simulated data sets were 
generated and the coefficients were estimated using both L2E and MLE.   Table 1 lists the 
summary statistics for the estimated coefficients. 
 

Table 1: Summary statistics of the coefficients estimated using L2E and MLE from 100 
simulation runs in the Example 1.  Putative values are β0=-2 and β1=2. 

 
 β0 β1 
 MLE L2E MLE L2E 

Mean -2.179 -2.289 2.195 2.328 
Standard deviation (SD) 0.741 0.945 0.573 0.880 

Median -2.067 -2.128 2.084 2.125 
Inter Quartile Range (IQR) 1.009 1.125 0.747 0.859 

 
 

Figure 1 on the next page shows the (density scaled) histograms of the simulated values.  Both 
Table 1 and Figure 1 indicate that L2E estimates have higher variability than MLE and 
somewhat bigger bias.   
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Figure 1: The (density scaled) histograms of the simulated values for Example 1. 
 
 

Example 2: On each of 20 points, x=0.2, 0.4,…, 4.0, we simulated a binary response 

Y~Ber(π(x)) where 
)5.13exp(1

)5.13exp()(
x

xx
+−+

+−
=π .  There were ten replications on each x, giving us 

total of 200 data points for each simulated data sets.  100 such simulated data sets were 
generated and the coefficients were estimated using both L2E and MLE.   Table 2 lists the 
summary statistics for the estimated coefficients. 



Table 2: Summary statistics of the coefficients estimated using L2E and MLE from 100 
simulation runs in the Example 2.  Putative values are β0=-3 and β1=1.5. 

 
 β0 β1 
 MLE L2E MLE L2E 

Mean -2.989 -3.010 1.488 1.498 
SD 0.551 0.538 0.241 0.239 

Median -2.967 -2.943 1.452 1.471 
IQR 0.720 0.792 0.317 0.345 

 
 

 
 

 
Figure 2: The (density scaled) histograms of the simulated values for Example 2. 
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Figure 2 on the previous page shows the (density scaled) histograms of the simulated values.  
What Table 2 and Figure 2 show that L2E estimates have more or less similar variability to MLE 
and somewhat smaller bias than MLE whereas it had higher bias than MLE in the previous 
example. 
 
Example 3: On a grid of 50 points on the unit square (0,1)x(0,1), we simulated a binary response 

Y~Ber(π(x1,x2)) where 
)15.03exp(1

)15.03exp()(
21

21
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−+−
=π .  There were ten replications on each 

point (x1,x2), giving us total of 500 data points for each simulated data sets.  100 such simulated 
data sets were generated and the coefficients were estimated using both L2E and MLE.   Table 3 
lists the summary statistics for the estimated coefficients.  Here variability and bias seem to be 
higher for L2E than MLE. 
 
 

Table 3: Summary statistics of the coefficients estimated using L2E and MLE from 100 
simulation runs in the Example 3.  Putative values are β0=-3, β1=0.5, and β2=-1. 

 
 β0 β1 β2 

 MLE L2E MLE L2E MLE L2E 
Mean -2.999 -3.120 0.628 0.753 -0.985 -1.108 

SD 0.884 1.989 0.767 2.019 0.955 1.149 
Median -2.788 -2.798 0.599 0.603 -0.886 -0.903 

IQR 1.059 1.139 0.937 0.954 0.952 1.015 
 
 
4 Discussion   
 
The examples in the previous section showed that L2E estimates more or less agree with MLE 
estimates.  The general L2E theory predicts that L2E estimates tend to have higher asymptotic 
variance than MLE.  An important issue yet to be sorted out is that of starting values.  Just like 
any other numerical minimization problem, L2E minimization depends more or less on the 
choice of starting values.  It is possible that some of the variability seen in the simulation 
examples may have been due to the poor choice of starting values even as the simulation 
program compared the estimates from three different sets of starting values and chose the 
estimates corresponding to the lower local minimum of the functional. 

Sometimes the fact that L2E often gives two or more different fits to a given data set may 
even be advantageous in that fits corresponding to different local L2E minima hold valuable 
diagnostic information as well as quite useful information on the local structure of the data, as 
was argued by Scott [5].   This suggests that a potentially useful diagnostic tool may be 
developed based on L2E estimates of binary response regression parameters. 
 Another key feature of L2E estimates in other settings has been its robustness.   One 
problem of interest in a binary response regression is that of separation where at least one 
parameter estimate diverges without bound even as the likelihood converges.  Separation 
primarily occurs in small samples with highly explanatory covariate over which there is no (or 
hardly any) overlap between 0’s and 1’s [6].  Initial exploration of L2E estimates for simulated 



data sets with separation seem to have more potential fits than for the data sets without 
separation.  In many cases, the minimization algorithm does converge at values of the estimates 
that are not too big.  This is also an avenue of further research. 
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