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1 Executive Summary 
 
We consider four boundary value problems (BVPs), concerning ourselves with the 
transient response of elastic/viscoelastic strips subject to different boundary conditions 
(BCs).  Although each problem is of a fundamental interest in basic mechanics, the 
primary purpose for these models is to find situations where the composite strips admit 
optimal designs.  The models that do possess optimal designs can then be used as 
benchmarks for larger, numerical studies of more complicated materials and geometries. 
 Of the four problems considered, only the strip subject to a stress step and fixed at 
the far end has optimal solutions.  The qualitative structure of these solutions mimics 
those of the elastic/elastic strip considered in the introduction.  Despite the lack of 
optimal solutions for the other cases we do see that the impact boundary conditions differ 
significantly from the stress step conditions in that the peak stress decreases with distance 
from the applied stress.  This is in sharp contrast with the motivating BVP presented in 
the introduction where the peak stress is greater at greater distances from the applied 
stress. 
 In all the problems considered the method of solution is the Laplace transform 
with a numerical inversion via the DAC algorithm.  Details and further references for this 
method can be found in the appendix. 
 
2 Introduction 
 
For background and motivation, we consider a special case of a problem from Velo and 
Gazonas, [1].  A description of the physical situation is this:  A strip composed of two 
elastic layers is subject to a step in stress on one boundary and the other boundary is kept 
fixed.  Mathematically, the BVP presented in Table 1 summarizes the situation: 
 
 



Table 1.  The BVP corresponding to two elastic layers subject to a step stress on the left 
and fixed on the right. 
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We will further limit the possible selection of materials for Layer 2 by introducing the 
parameter α  and using it to scale both the elastic modulus and density of  Layer 1: 
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This restriction implies that waves propagating in each layer will propagate with the same 
velocity, i.e., 
 

21 cc = . 
 

 Pretending there exists a strain gauge at the center of each layer, we would record 
stress/time histories that are displayed in Figure 1. 
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Figure 1.  The stress/time history at the center of each layer of an elastic/elastic strip with 
a parameter value 5.0=α .  Stress is normalized by the magnitude of the applied stress, 

0σ , and time is normalized by the propagation time across the entire composite,  ./ cL
 
 

 A feature of Figure 1 that leads to further inquiry is that the stress in Layer 2 
seems to exceed that of Layer 1 by a considerable amount.  Is this true for every value of 
α ?  Figure 2 is a graph of the peak stresses that propagate in Layers 1 and 2 as α  is 
varied from 0 to 10. 
 
 

1.5

2.0

2.5

3.0

3.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

alpha

st
re

ss Layer 1
Layer 2

 
 

Figure 2.  The peak stress in each layer as a function of α . 
 
 



 There appear to be, in Figure 2, values of α  for which the peak stress in Layer 2 
is at a minimum, and this minimum value appears to be 2.  This is in fact the case and one 
of the results reported in [1].  To summarize the relevant facts from that paper, the peak 
stress in Layer 1 is always less than or equal to 2, the peak stress in Layer 2 is always 
greater than or equal 2 and there are an infinite number of values of α  for which the 
limiting values of peak stress will be achieved.  We will refer to these values of α  as 
“optimal designs.” 
 The existence of optimal designs is the starting point and motivation for the 
current study.  The existence, however, is not always guaranteed.  For instance, consider 
the same strip with the fixed boundary at the right replaced by a free boundary: 
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Now, if we vary α and record the corresponding peak stresses in Layer 1 and 2 we get 
Figure 3. 
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Figure 3.  The peak stresses propagated in an elastic/elastic strip subject to a stress step 
on one boundary and free on the other. 

 
 

 Given such unexpected behavior in such simple models, we wish to answer the 
following questions:  Can a slight change of materials still lead to a situation with optimal 
designs?  Can a slight change in the applied stress lead to optimal designs?  We answer 
these questions in the sections that follow using a standard linear viscoelastic material in 
Layer 2.  We will consider separately the cases where the stress is generated by a stress 
step and a low velocity impact by a massive rigid solid.  We will also vary the condition 
on the right between a fixed and free boundary. 
 



3 Elastic/Viscoelastic strip subject to a stress step 
 
We will start by formulating the appropriate BVP for a strip composed of an elastic layer, 
subject to a step in stress, perfectly bonded to a viscoelastic layer fixed at its far end. 
 
 
Table 2.  BVP for the elastic/viscoelastic strip subject to a stress step on the left and fixed 

on the right.  
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We have employed the following notations:  The strain is denoted by ε  and ∗  denotes a 
convolution.  Therefore, the strain-displacement relation for Layer 2 is 
 

x
u
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= 2
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There are many equivalent ways to prescribe viscoelastic behavior and we have chosen to 
use the relaxation modulus, .  This function gives the stress response of the solid to 
an experiment where a unit strain is applied and held.  The resulting stress, , is a 
decaying function of time.  Thus, the stress in Layer 2, is expressed as a convolution, in 
time, of the relaxation modulus and the time derivative of the strain, [2,3], 
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We will be considering the case where Layer 2 is a standard linear solid.  Its relaxation 
behavior is characterized by an initial elastic response, , followed by exponential 
decay towards a long time stress . 

0G
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To keep the situation analogous to that considered in the introduction, we will scale the 
density and the initial elastic response by the parameter α .  This will also keep the 
wavefronts moving with the same velocity in both layers. 
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If we record the peak stresses in each layer as α  is varied we would get the graphs in 
Figure 4. 
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Figure 4.  The peak stress propagated in Layer 2 (visco layer)  for several values of  
(relative to ) as 

∞G

0G α is varied.  In each case the decay parameter is 1=β . 
 
 

So, we have struck upon another situation where optimal designs exist.  From Figure 4 
we can see a slight sensitivity of the optimal designs to the long term behavior of the 
viscoelastic solid, , but the qualitative behavior is consistent throughout all values 
considered.   

∞G

 We can also look at the peak stress in the elastic layer and see similar results, 
Figure 5. 
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Figure 5.  The peak stress in Layer 1, the elastic layer. 
 
 

 In Figure 5 we see one interesting behavior that was not present in the 
elastic/elastic case.  The optimal designs for the layers almost correspond; whereas, in the 
elastic/elastic case, the minimum of peak stress in Layer 2 occurred at parameter values 
where the peak stress in Layer 1 was at a maximum.  Consider Figure 6: 
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Figure 6.  The peak stresses in each layer of an elastic/viscoelastic strip with . 06.0 GG =∞

 
 

For low values of α the peak stresses almost coincide.  Therefore, an optimal design 
would be near optimal for both layers, not just Layer 2. 



 Now consider the case where Layer 2 is free instead of fixed at Lx = . 
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This is analogous to the case illustrated in Figure 3 of the previous section.  And, as in 
that section we can see, Figure 7, that this situation has lead to no optimal designs.  In 
fact, there appears to be little advantage to using the viscoelastic layer vice the purely 
elastic layer when the back boundary of the strip is free. 
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Figure 7.  The peak stresses in the elastic/viscoelastic strip when the right end of the 
composite is left free.  Material parameters used in this model were  and 07.0 GG =∞

.1=β  
 
4 The Elastic/Viscoelastic strip subject to a rigid impact 
 
We want to use the same strip that we used in the previous section, but now we will 
generate stress waves via low-velocity impact by a rigid projectile.  The following table 
is a formulation of the appropriate BVP: 
 
 



 
Table 3.  Formulation of the BVP for rigid impact upon a fixed elastic/viscoelastic strip. 
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It should be pointed out that this BVP is only valid until contact between the striker and 
the strip is lost.  From that point on, the strip will undergo free vibrations.  For the results 
that follow, we have only considered the stresses that propagate while this BVP is valid.  
Therefore, if, under free vibrations, the strip would have attained a greater peak stress 
then that will not be reflected in our results. 
 Figure 8 is a graph of the peak stress as a function of the parameter α , which 
plays the same role as in the previous section. 
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Figure 8.  The peak stress at the point of contact and at the center of each layer as a 
function of .α   The viscoelastic material parameters are 07.0 GG =∞  and 10=β .  The 
striker has a mass of 12 times the composite strip and the normalizing stress is now 

1100 ρσ Ev= . 
 
 

Again, we are left without any optimal designs.  One difference between the stress step 
and the impact scenarios is that during impact, the peak stress decreases monotonically 
with distance from the point of impact.  This is in sharp contrast to the elastic/elastic strip 
subject to a stress step where the peak stress in Layer 2 was always greater than the peak 
stress in Layer 1. 
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Figure 9.  The peak stresses at the point of contact and the midpoint of Layer 1 and 2.  
Stress is generated by impact by a rigid projectile of relative mass of 12.  The strip is free 
on the far end. 

 
 Figure 9 gives the results for the last case considered here.  This is the rigid 
impact where the strip is free on the far boundary.   Clearly, for Layer 2 there are no 
optimal designs, and for most of the values of α  shown, the peak stress in Layer 1, at the 
point of contact and the midpoint of the layer, follows a similar path.  There is some 
interesting behavior when 21 <<α , but we don’t see the type of behavior we seek.  If 
we take the relative stress of 1 to be the minimum of the peak stress (in Layer 1), then 
any value of α greater than 2 will provide this value.   
 Layer 2 approaches its large α  behavior more smoothly, but there are still no 
local minimums. 
 
7 Summary 
 
We have considered four simple BVPs.  In each, an elastic/viscoelastic strip is subject to 
varying BCs and one parameter is allowed to vary.  As that parameter varies we seek 
optimal designs with respect to the peak stress. 
 In the case of a stress step applied to a fixed strip, the optimal designs follow a 
qualitatively similar pattern to the elastic/elastic strip.  None of the other cases display 
this behavior.  Both the stress step/free and the rigid impact/fixed BVPs have a 
monotonically decreasing peak stress for all values of the parameter in each layer.  The 
rigid impact/free BVP has a limited range of parameter values where peak stress does not 
follow this monotonic behavior, but it is very limited and the single minimum value of 
peak stress is not found at distinct parameter values. 
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Appendix:  Computational Method 
 
In transient problems it is often convenient to use the Laplace transform as a method for 
solving differential equations.  In the case of viscoelastic materials, due to the 
Correspondence Principle, Laplace transforms are the essential tool.  Therefore, in this 
study Laplace transforms have been used for all calculations.  However, because of the 
variety and complexity of transforms encountered it was decided that numerical inversion 
would provide the most efficient means towards a solution in the time domain. 
 In a related study by the same authors, [4], it was concluded that the most 
appropriate method for numerical inversion was the DAC algorithm, [5,6,7].  It is the 
purpose of this appendix to briefly describe the algorithm and its modification for 
handling the Gibbs’ phenomenon present in all of the problems considered. 
 Consider a Laplace transform pair, defined by the integrals: 
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The real number  in the inversion integral is taken to be greater than the real part of any 
singularities of the transform .  For details about the classes of permissible functions 
and issues of convergence we refer to any standard text, such as LePage, [8]. 

a
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 Since the inversion integral is taken along a vertical path in the -plane, we fix 
the real part of s  and set the variable of integration to the real variable 

s
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ωias += .  Then set , where u  and  are real valued.  Expanding, and using 
the knowledge that  is real: 
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The products ( )tu ωcos  and ( )tv ωsin  are both even functions of ω ; therefore, one further 
simplification yields the inversion formula: 
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If we approximate this integral using Simpson’s rule with a step size of T/πω =∆ , we 
get the series 
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This series, once truncated, is the DAC approximation to the inversion integral.  Error is 
introduced into the approximation through truncation of the series and because the 
Simpson’s method was used to approximate the integral.  These errors can be bounded by 
an appropriate choice of the real number .  A detailed analysis of error can be found in 
the references, [5,6,7]. 

a

 One matter that concerns us is that the approximation is in the form of a Fourier 
series.  Therefore, it is susceptible to Gibbs’ phenomenon at discontinuities.  This has 
lead to some poor quantitative results when optimizing the types of problems considered 
in this paper.  For instance, in the very first problem considered, and elastic/elastic strip 
subject to a step in stress and fixed at the far end.  Without mitigating for Gibbs’, the 
peak stress in each Layer as a function of α  can be seen in Figure 10. 
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Figure 10.  Optimization of an elastic/elastic strip, subject to a stress step and fixed at the 
far end.  Results without mitigation of Gibbs’ phenomenon. 

 
 

We know, analytically [1], that the Layer 1 stress is always below 2 and the minimums of 
the Layer 2 stress should reach down to 2, but Figure 10 does not support this.  This is the 
result of Gibbs’ phenomenon, where the value of stress is overestimated at every 
wavefront. 
 To mitigate the effect of Gibbs’ phenomenon we have employed a filter technique 
known as Lanczos’ σ -factors, [9].  When a Fourier series is truncated at , then the Nk =
σ -factors are given by 
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Thus, a truncated Fourier series for a function ( )tg  on the interval ( )T2,0  with Fourier 
coefficients  and  will take the form ka kb
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The presence of the σ -factors does not effect the convergence of the series, introduces a 
minimum of computations into the DAC algorithm and works well at eliminating the 
effects of Gibbs’ phenomenon. 


