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1 Executive Summary

Quantum computation is a very active area of research with potential applica-
tions of vital interest. However, construction of a useful quantum computer is
not yet practical and faces many technical challenges, such as the need to pre-
vent quantum decoherence from corrupting the desired evolution of a quantum
spin system.

Khaneja, Brockett and Glaser [5], [6] have described an optimal control
strategy for a nuclear magnetic resonance (NMR) quantum spin system with
two or three spins. Their methods, however, do not apply directly to systems
with more than three spins. We propose to extend their results using differential
geometric methods which can be applied to NMR quantum systems with any
finite number of spins. Our methods are also applicable to other constrained
quantum spin systems.

2 Introduction

Research in the field of quantum computation is extremely active, motivated
by the theoretical possibility of constructing quantum machines with unusual
capabilities. For example, Shor’s factoring algorithm [11] demonstrates that a
quantum computer could find the prime factors of a composite number more
efficiently than any known algorithm for classical computers. Since the difficulty
of factoring large numbers is crucial to the security of many encryption schemes,
this is an application of vital interest.
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Although the theory of quantum computing algorithms is flourishing (see for
example [7], [9]), construction of a useful quantum computer is not yet possible.
One challenge concerns the difficulty of preventing the process of decoherence,
caused by coupling of the quantum system to the environment, from corrupting
the desired evolution of a system. For example, in nuclear magnetic resonance
(NMR) experiments, control inputs are mediated by radio-frequency (rf) pulses,
and to minimize decoherence it is desirable to make these pulse trains as short
and efficient as possible.

Two recent papers by Khaneja, Glaser and Brockett [5], [6] reduce the prob-
lem of finding efficient pulse trains for a two-spin or three-spin NMR system to
the problem of finding sub-Riemannian geodesics in a quotient space of SU(4).
However, the methods they use are not scalable to systems with more than
three spins. In this paper we outline a different method that is, in principle,
applicable to a system with any number of spins, and comment on some of the
practical difficulties in calculating the desired sub-Riemannian geodesics with
this method.

3 NMR spin systems and optimal control

3.1 NMR systems as control systems

In non-relativistic quantum mechanics the state vector |ψ(t) > of a quantum
system at time t is given by

|ψ(t) >= U(t)|ψ(0) > (1)

where |ψ(0) > is the initial state and the unitary propagator U(t) evolves ac-
cording to the time-dependent Schrödinger equation

U̇(t) = − i
~
H(t)U(t) (2)

where U(0) = I (the identity matrix) and H is the Hamiltonian of the sys-
tem [10].

The Hamiltonian for an NMR system can be decomposed as

H = Hd +
m∑

j=1

ujHj (3)

whereHd is the drift Hamiltonian corresponding to internal couplings, the uj are
controls, and the Hj are the rf or control Hamiltonians which can be externally
affected [5]. By (1) and (2) the evolution of a quantum spin system with n spins
can be regarded in terms of the action of a one-parameter subgroup U : R → G
on the space of state vectors |ψ >, where G is the unitary matrix group SU(2n).
The problem of finding the most efficient rf pulse train needed to evolve the
system to a desired state is therefore equivalent to the problem of finding a
time-optimal path from U(0) = I to a desired UF . The control Hamiltonians
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Hj can be chosen so that the Lie subalgebra generated by { iHj } is the Lie
algebra of the closed subgroup As before, K = SU(2)⊗ · · ·⊗SU(2) (n factors).

The set of possible velocity vectors (accessible directions) in SU(2n) is

AdK (iHd) = { k(iHd) k−1 | k ∈ K }.

This is a proper subspace of the entire tangent space at any point. (The
velocity vectors are subject to a non-holonomic constraint.) However, this sub-
space is bracket-generating : that is, at any point p ∈ SU(2n) the tangent space
is spanned by the iterated Lie brackets of vector fields in AdK (iHd). The fol-
lowing theorem shows why this is sufficient for our purposes: any two points
in the state space are connected by at least one admissible curve γ, that is, a
curve whose velocity vectors lie in AdK (iHd).

Theorem 1 (Chow, 1935) Let D ⊂ TM be a smooth k-plane field on a con-
nected manifold M . If D is bracket-generating, then given any two points
p, q ∈ M , there is a piecewise-smooth admissible curve γ : [a, b] → M with
γ(a) = p, γ(b) = q.

Proof. See [3] for a proof. 2

In the language of control theory, the fact that D = AdK (iHd) is bracket-
generating implies that the entire state space SU(2n) is controllable. Moreover,
there is a natural generalization of Riemannian geometry that allows us to
measure the length of any admissible curve γ.

Definition 1 A sub-Riemannian metric on D is an inner product 〈 , 〉 defined
smoothly on the subspaces lying in D.

Definition 2 1. The sub-Riemannian length of a smooth admissible curve
γ : [a, b] → SU(2n) is

L(γ) =
∫ b

a

〈γ̇(t), γ̇(t)〉1/2 dt (4)

If γ is piecewise-smooth, the length of γ is the sum of the lengths of its
smooth segments.

2. Let p, q ∈ SU(2n) be any two points in SU(2n). The sub-Riemannian
distance between p and q is

d(p, q) = inf{L(γ)|γ : [a, b] →M admissible with γ(a) = p, γ(b) = q} (5)

If an admissible path γ connecting p and q with L(γ) = d(p, q) exists, γ
is called a sub-Riemannian minimizer. Critical points of (4) are called sub-
Riemannian geodesics. Every sub-Riemannian minimizer is a geodesic, but the
converse is not true; however, every sub-Riemannian geodesic is a local mini-
mizer. Thus searches for minimizers often begin by computing geodesics.
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3.2 A brief description of the Griffiths formalism

The Griffiths formalism, named for the author of [4], provides a coordinate-
independent method for computing sub-Riemannian geodesics (and other con-
strained variational problems). Briefly, the Griffiths formalism starts by writing
the linear velocity constraints in the tangent bundle as a system of differential
1-forms θ1, . . . , θm. These 1-forms define a subbundle of the cotangent bundle
over X = D×R and we can lift the constrained variational problem on the state
space to this higher-dimensional space where it corresponds to an unconstrained
variational problem. Solutions to the unconstrained variational problem “up-
stairs” project onto solutions of the constrained variational problem on state
space.

More precisely, let X = D × R where D ⊂ TM is the k-plane field in
question. On X we lift the sub-Riemannian energy functional to a 1-form φ =
1/2((p1)2 + · · ·+ (pk)2)dt and define a submanifold Z of T ∗X by

Z =
⋃

x∈X

{Zx}

where for each x ∈ X,

Zx = {φ(x) + Ix ⊂ T ∗xX}.

where I is the module spanned by the 1-forms θi, namely

I = {λ1θ
1 + · · ·+ λmθ

m|λ1, . . . , λm ∈ R}.

After some more calculations (omitted for brevity) one obtains a system of
ordinary differential equations in the variables λi. Solutions to this system are
curves in the cotangent space at the identity of SU(2n); they must be lifted to
the entire Lie group in order to find sub-Riemannian geodesics on the group.

One practical difficulty with this method is that the number of differential
equations to be solved increases exponentially with the number of spins in the
quantum system. The table below illustrates this.

n unitary group number of structure eqns
1 SU(2) 3
2 SU(4) 15
3 SU(8) 63
4 SU(16) 255
5 SU(32) 1023

3.3 Current work in progress

Due to the large number of variables and equations involved, we have started
with the case n = 2 as a test case and also for comparison with the calculations
in [5] and [6]. Even in this case there is still work to be done; in particular,
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lifting the solutions in cotangent space to the full state space involves some
ingenuity.

As we become more familiar with the symmetries involved in this problem,
quicker solution methods may become apparent. However, at present there are
many man-hours involved in simply determining the geodesic equations.

4 Conclusion

The need for multi-spin control through constrained control mechanisms is not
confined to NMR quantum computers, but is shared by other quantum con-
trol problems. Thus this problem is not limited to just one means of physical
implementation.

The problem we are currently investigating entails a good deal of computa-
tion. The task should be lightened by software such as Maple 7 and Matlab but
will still be labor-intensive. However, the goal is worthwhile: we need to find
ways to control larger numbers of spins and solutions to the time-optimal path
problem should be of value in this endeavor.
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