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Time Scales and Engineering

Cantor sets, limit points, etc!
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Where 99.99 % of engineering has 
taken place up to now…

The real world that engineers have 
tried to avoid. 



Application: CAN
The “Controller Area Network” (CAN) protocol defines a communication 
standard for real-time systems using a centralized comm bus. 
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CANbus
1Mb/s typ.

Features of CAN make it very good for control problems: real-time collision 
arbitration, works over variety of modes, redundancies, message priorities, 
all nodes “hear” every message.

Widely adopted by automotive manufacturers (e.g. GMLAN)…



A CAN system
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SN/AN based on PIC 18F248



Automotive Use
A typical modern vehicle has 6 to 12 computers (CNs) and upwards of 50
SNs/ANs:

- Transmission Temp
- Engine Temp
- 12V Power Ack Control
- 12V Power Ack Inverter
- SOC Reset
- Reverse and 2nd Gear Clutches
- Clutch Pressure Control
- DC/DC Converter
- DC/DC Converter Current
- 12V Power relay
- Brake Solenoid
- Warning Lights
- Main Contactor close
- Torque measured
- Idle
- Shift in Progress
- Inverter Temp

- Battery Voltage
- Batter Current
- Battery Temp
- Accelerator Position
- Brake Pressure, Master
- Brake Pressure, Line
- Transaxle Pressure
- Clutch Line Pressure
- Speed
- Battery Ground Fault
- Hi/Lo Contactor State
- Key Switch Run
- Key Switch Start
- Brake Switch
- Emergency Brake
- Shift Lever
- Transaxle Temp

Key Observation:
Some of these signal
sources are periodic
and some are sporadic.

Periodic signals are 
required to complete
control loops. 

Sporadic signals usually
of very high priority



A Time Scales Primer
• A time scale      is any closed subset of the real line.
• We denote the successor of             as          . The graininess of an 

element              is the distance from that element to the next, i.e.  

In the reals, the graininess of every element is 0 and in the integers, 
the graininess of every element is 1. 

• We have a generalized delta derivative for a function           
which is defined by   

• The integral is based off of the Riemann integral and is defined by
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A Time Scales Primer
• We say the function        is regressive  (             )  if   

and positively regressive (                )  if          , for all 

• We now define the regressive first order linear dynamic initial value 
problem:

• We define the unique solution to this IVP, given by             

• The generalized exponential function is defined by
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A Time Scales Primer

• A first order linear dynamic IVP is exponentially stable if we have

Where        is called the regressive stability region.

• If this “time average” is negative, then we will have an exponentially stable 
solution.

• We note some interesting features of this region:
– It is always contained in the left half plane
– It is a possibly disconnected region

⎭
⎬
⎫

⎩
⎨
⎧

<∆
+

−
=∈ ∫ ↓∞→

t

t st s
s

tt
tp

 

 )(0 0

0
)(1Log

lim
1suplim:)(: τ

τλ
λ

τµ
CS

CS



Time Varying Systems
• We now ready to consider the stability characteristics of the regressive 

first order time varying linear dynamic system

• We use a Unified Lyapunov Theory.  Let           be a symmetric 
positive definite matrix.  Let           be a solution to the above system.   
By taking the delta derivative of the weighted norm of our solution, 
we obtain the following (hopefully negative definite) quadratic form:

where                     and 
• If this quadratic form is negative definite at each element     in the 

time scale, then the solution to the system is exponentially stable.
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Time Varying Systems
• We do this by employing the generalized version of Gronwall’s Inequality:
Theorem: If                       and                 ,  then

for all 

implies

for all           .
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CAN control
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Timing is very important!
Delays can cause instability.
Sources of delay:
• Traffic
• Message length
• Transmission delay

CAN is real-time trans delay is deterministic (prop to message length). 
Messages limited to 8 bytes. Main source of delay is TRAFFIC on bus.
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Problems…
t

reqT recT compT transT sleepT )(tσ

Phase delay (not a huge problem)

would be constant and predictable if all loops on the bus 
operated in synchrony. 

Can’t do this: high-priority sporadic messages compete for bandwidth
and cause jitter.

Previous thinking was to design message schedulers to minimize
jitter; attempt to run control loops using “rule of 10”; keep bus
utilization below 50%.
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Solutions?

SOLUTION? Is it possible for servo loops to adaptively sample? 
Temporarily relinquish strict timing but still maintain stability?

• Need a loop stability metric that accounts for traffic conditions.
• Use time scale models since system timing is now not known a priori.
• Use metric to increase sampling rate or raise priority for plants that 
are nearing instability.

Leads to an interesting concept: “    -dynamics”: the timescale on which 
a system is defined is itself determined by the dynamics of the system 
and any relevant external inputs.

µ

))(()(

))(),(()(

tft

ttgt

xx

ux

=

=
∆

µ



A Linear Plant on CAN

To start, work with minimum-phase linear systems of form
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Stability
Choose a nominal sampling rate const=*µ

Look at maximum
eigenvalue radius to 
determine a good 
sample period
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*µ ER reflects how much
control “effort” required
to stabilize a system.

Require ER<1 or system
is “instantaneously unstable”.



Stability
Design a symmetric matrix P>0 s.t.
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The Cool Part

Thus, by Gronwall’s Inequality, we have that 
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and furthermore by Potzche, Siegmund, Wirth (2003), if
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V is bounded above by a standard real exponential (for ease of interpretation):
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The cool part: the system may be instantaneously unstable, but 
remains stable on average.



Basic Idea
Im

Re
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Where we want         to be most of the
time.

OK if         goes here but
not for too long
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Timing
• We know we have a purely isolated (discrete) time scale.
• If the average over a moving finite window is negative, the infinite-
window average must necessarily be negative too.  
• Refine SC to get a useable form:
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• Set Tsleep so that              in absence of traffic.
• In traffic, monitor       and update       .
• If         rises too near to 1, reduce Tsleep

*)( µµ =t
)(tP

)(tP
)(tµ

t
reqT recT compT transT sleepT )(tσ



Example
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CBA (Oscillatory, unstable)

Choose a feedback compensator that gives closed-loop system
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(optimal bandwidth) 
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Simulation 1

System experiences 
burst of network traffic 
between 15 and 45 
seconds.

Averaging window is 
25 samples.

During high-traffic 
period, system uses 
19.2% less bandwidth 
than a constant-period 
system would and 
remains stable! 
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Simulation 2
Same setup, but now 
burst causes P(t) to 
exceed preset threshold 
of 0.25. Controller 
reduces       P(t) falls 
to “safe” level. 

System remains stable 
using 13.5% less band-
width than constant 
period system would.
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In Practice…
Stuff engineers care about:

• Can         really be measured (in order to measure          )? Yes –
consists of two parts: waiting for a collision-free transmission (can be 
measured by an internal timer) and actual transmission transit time. 
Since we have a real-time network, transit time is deterministic.

• What about the computation of                  ? No need to compute –
this function is predictable once the system model is known, can be 
stored in a lookup table over a sufficiently representative span of      
values.

• What happens if many nodes try this all at the same time? GREAT
QUESTION!! How to model/analyze multiple dynamical systems 
interacting on different (but coupled) time scales?.
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Conclusions

• Time scale methods hold promise for problems that are 
purely discrete (or at least discretized) but of non-constant
step size.

• Time scale methods can help in design/analysis problems where
discrete and continuous solutions to the problem are both relevant 
(e.g. high-gain adaptive controllers, Gravagne/Davis/DaCunha ’04).

• Questions remain in general about the nature of solutions to 
“    -dynamics”  problems:µ
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