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Quantum Computation and Quantum Control

• Objective: create quantum machines with unusual capabilities

• General obstacle: decoherence of quantum systems

• Need: optimal control of quantum systems with high precision



The optimal control problem

Let |ψ(t) >∈ C2n

be the state vector for an n-qubit system at time
t.

Goal: transition from the initial state |ψ0 > to a desired final state
|ψf >= Uf |ψ0 > in the shortest time possible (to minimize
decoherence).



The optimal control problem, cont’d

|ψ(t) >= U(t)|ψ0 >

where U(t) is a solution curve in SU(2n) of

U̇(t) = − i

~
H(t)U(t),

U(0) = 1.

There are many Hamiltonians H(t) which will permit U(t) to
evolve to Uf in finite time. The optimal control problem becomes:
can we control H(t) so that the curve U(t) is as short as possible?



Example of a curve in SU(4)

U(t) =


cos (t/2) − sin (t/2) 0 0

sin (t/2) cos (t/2) 0 0

0 0 cos (t/2) − sin (t/2)

0 0 sin (t/2) cos (t/2)

 .

This transforms |ψ0 >=


1

0

0

1

 into |ψf >=


0

1

−1

0

 as 0 ≤ t ≤ π.



Example : control of NMR spin systems

• Khaneja, Brockett and Glaser: the optimal control problem for
NMR reduces to finding sub-Riemannian geodesics in SU(2n)
PRA 65: 032301 (2002)

• their results apply directly to systems of 2 or 3 qubits

• is there a method for extending their solution to systems with
n > 3 qubits?



The Hamiltonian of an n-spin NMR system can be decomposed as

H = Hd +
n∑

j=1

ujHj (1)

where Hd is the drift Hamiltonian (internal couplings), the uj are
controls and the Hj are the rf or control Hamiltonians.

The control subbasis {iHj} generates the Lie algebra of the closed
Lie subgroup K =

⊗n
j=1 SU(2) ⊂ SU(2n).



Product operator basis for the Lie algebra su(2n)

The product operator basis for su(2n) is {iBs} where

Bs = 2q−1
n∏

k=1

(Ikα)aks ,

α ∈ {x, y, z }

Ikα = 1⊗ · · · ⊗ σα ⊗ 1

and 1 ≤ q ≤ n.



Accessible directions in the NMR control problem

The set of possible velocity vectors (accessible directions) in
SU(2n) is

AdK (iHd) = { k(iHd) k−1 | k ∈ K }.

As before, K = SU(2)⊗ · · · ⊗ SU(2) (n factors).

This is a proper subspace of the entire tangent space at any point.
(The velocity vectors are subject to a non-holonomic constraint.)
However, this subspace is bracket-generating.



Bracket-generating subspaces

A subspace D of the Lie algebra is bracket-generating if the entire
Lie algebra is generated by iterated Lie brackets of elements of D.

Chow (1939): if D is bracket-generating, any two points in the Lie
group G can be joined by a piecewise-smooth curve U : [a, b] → G

so that U̇(t) ∈ D whenever U̇(t) is defined.

In the language of control theory, the reachable set is the entire Lie
group G = SU(2n).



Sub-Riemannian geometry

A positive-definite inner product, called a sub-Riemannian metric
can be defined on the subspace D = AdK(Hd) of the Lie algebra.
Since all the control curves U(t) are tangent to this subspace, we
can define a length functional on these curves by the formula

L(U) =
∫ b

a

〈U̇(t), U̇(t)〉1/2 dt. (2)

Solution curves U(t) that minimize this length functional are
sub-Riemannian geodesics.



Constrained variational calculus

The problem of finding optimal controls for the NMR n-qubit
system thus reduces to finding sub-Riemannian geodesics in
SU(2n). Khaneja et al solved this problem for the 2- and 3-qubit
case directly by using special properties of SU(4) and SU(8), but
this method does not directly apply to the case of n > 3 qubits.

The problem of finding sub-Riemannian geodesics is a variational
problem with linear velocity constraints. There exists a general
method for computing these variations, called the Griffiths
formalism (Griffiths 1983).



Griffiths formalism for constrained variations

Let X = D × R and let φ be the energy 1-form

φ =
1
2
((p1)2 + (p2)2 + · · ·+ (pk)2) dt (3)

on X. Let Z ⊂ T ∗X be the submanifold defined by

Z =
⋃

x∈X

Zx

where Zx = {φ(x) + Ix ⊂ T ∗xX}, and I is the defining coframing of
D lifted to X.



Griffiths formalism, cont’d

The constrained variational problem on the state space M is thus
lifted to an unconstrained variational problem on Z.

The integral curves of the Cartan system of the canonical
symplectic 2-form on Z project to regular sub-Riemannian
geodesics on the state space M .



Griffiths formalism, cont’d

This method was used in the speaker’s Ph.D. thesis to find
sub-Riemannian geodesics on Engel four-manifolds. In particular,
explicit solutions were found for sub-Riemannian geodesics on the
Lie groups SO(3)× S1, SEuc(2)× S1, and SO(2, 1)× S1.

More recently this method was applied to compute geodesics of
sub-Finsler three-manifolds (Clelland, M, math.DG/0406439).



• Advantage:

– applicable to quantum control problems with any finite
number of spins

• Disadvantage: number of differential equations becomes
rapidly larger as the number of spins increases



Computational challenges

The Griffiths formalism yields ODEs based on the structure
equations of the Lie group. The number of structure equations
grows rapidly with the number n of qubits.

n unitary group number of structure eqns

1 SU(2) 3

2 SU(4) 15

3 SU(8) 63

4 SU(16) 255

5 SU(32) 1023



Progress so far

• 2- and 3-qubit cases done by Khaneja et al (PRA 65: 032301
(2002)) using different methods

• 4-qubit case underway, will take many man-hours



So, why do it?

1) Mitigating factors:

a) structure equations for SU(2n) have similar characteristics
for all n;

b) computer algebra software can be adapted.

2) This optimization problem exists with the same general
outlines for all quantum computation schemes, not just NMR.



Summary:

• it is possible to extend Khaneja et al’s results, with the help of
differential geometric methods as outlined above.

• the control problem, with different specifics, is relevant to other
quantum computation systems

• the computations will be nontrivial

• the possible rewards are worthwhile, since control of substantial
numbers of qubits is required for useful quantum information
processing


