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Background

• Need for lightweight alternative to fleet of 
armored vehicles

• Performance of composite armor
– Ballistic

• Single hit vs. multi-hit
• Gama et al., Mahfuz et al., Monib and Gillespie, DeLuca et al.

– Structural
• Mechanical loading (Huang et al., Dávila et al., Mahdi and 

Gillespie)
• Thermal loading (not as well characterized)

• Composite armor must operate in diverse 
environmental conditions



Background

• Thermal loads induce thermal and 
mechanical strains
– potential weakening of bonding resin due to 

varying temperatures
– weakening of composite armor which may 

impact survivability and structural integrity



Purpose

• To investigate the feasibility of modeling 
thermal and mechanical stresses induced 
in composite armor due to expected 
operating thermal loads



Experimental Model

• Analyzed various composite 
recipes
– Backplate materials

• Al 5083, Ti 6-4, and S2 glass 
blend

• S2 glass blend had additional 
IM7 carbon layer

– Exterior ceramic tile (silicon 
carbide)

– Ethylene Propylene Diene
Monomer (EPDM) rubber 
layer used to test decoupling 
of thermal strains with each 
backplate material

• Strain gages attached to each 
layer except for rubber



Experimental Model

• Composite specimens tested in environmental 
chamber at four target temperatures (-51.1ºC, 
12.2ºC, 48.9ºC, 82.2ºC)



Experimental Model

• Temperatures held for six hours to ensure 
thermal equilibrium
– Strain gage readings did not fluctuate
– Thermal blanket used to prevent thermal shock
– Strain readings taken every three seconds during 

entire programming sequence 



Finite Element Model

• ANSYS 8.1 used to model composite armor 
recipes



Finite Element Model

• Boundary conditions on bottom plate
– One corner node fixed in all degrees of freedom
– Another corner node on same edge fixed in x- and 

y- translation
– Remaining corner nodes fixed in y- translation 

(prevent overturning)
• Thermal loads from experiment applied to finite 

element model (-51.1ºC, 12.2ºC, 48.9ºC, 
82.2ºC)



Finite Element Model

• Material Properties
– Isotropic properties and linear strain profile 

assumed for Al and Ti

Sample Name
Young’s 
Modulus 
(Mpsi)

Poisson’s 
Ratio

Shear 
Modulus 
(Mpsi)

Coefficient of 
Thermal 

Expansion (x 
10-6)(1/ºF)

Aluminum 11.1 0.33 4.17 13.1

Titanium 16.5 0.16 6.2 2.2

EPDM 
Rubber 0.0503 0.49 n/a 320



Finite Element Model

• Material Properties (cont)
– Orthogonal properties for S2 glass and IM7 carbon 

since each layer has different fiber orientation
– CMAP used to determine effective properties in 

each orthogonal direction
• Models generated by ANSYS 8.1 produced 

strain contour plots; strain contours were 
symmetric (boundary conditions validated)



Finite Element Model

Strain contour plot of S2 glass specimen at 
Co9.48

.

Strain contour plot of S2 glass with rubber
specimen at Co9.48

.



Theoretical Analysis

• Composite Materials Analysis of Plates 
(CMAP) used to conduct theoretical 
analysis
– CMAP uses classical laminate plate theory

• Assumes infinite plate length and linear strain 
distribution

• Strain gages placed in areas without edge effects 
(nonlinear regions)

– CMAP also used to determine effective 
material properties for composite specimens 
(S2 glass and IM7 carbon materials) 



Theoretical Analysis

• Linear free expansion
– CMAP could not accurately model decoupled 

strains due to compliant rubber layer
– Bond failure and excessive voids at bonding 

interface of rubber simulated two non-
interacting materials

– Linear free expansion used for materials with 
EPDM rubber layer (based on α∆T)



Results and Discussion

Microstrain vs. Specimen Thickness
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Results and Discussion

Al5083 with EPDM rubber at 10ºF
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Results and Discussion

Microstrain vs. Specimen Thickness
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Results and Discussion

Ti 6-4 with EPDM rubber at 180ºF

Microstrain vs. Specimen Thickness
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Results and Discussion

S2 Glass without EPDM rubber at 10ºF

Microstrain vs. Specimen Thickness
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Results and Discussion

S2 Glass with EPDM rubber at 180ºF

Microstrain vs. Specimen Thickness
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Conclusions

• ANSYS 8.1 finite element model and CMAP model provided 
fairly accurate thermal and mechanical strains for materials 
with good characterizations.

• Thermal strain mismatch between materials with significantly 
different coefficients of thermal expansion caused 
delamination especially at high temperatures.

• Bonding resin failed to maintain perfect bonding between 
layers.  Low temperature degradation of bonding resin was 
observed in all experimental recipes with rubber.

• EPDM rubber provided a compliant layer which served to 
decouple the thermal and mechanical strains between the 
ballistic protective layer and the structural backplate layer.

• Coupon lay-up procedure should be standardized and 
manufacture of composite specimens should be within a strict 
tolerance.



Future Work

• Material properties must be validated at elevated 
(and lowered) temperatures.

• Non-orthogonal material property tests must be 
performed on S2 glass, IM7 carbon and EPDM 
rubber specimens.

• Models can be used to investigate the 
combination of stresses and strains when a 
mechanical load is applied to the composite 
armor, such as in-plane shear loading.

• Cadet capstone design to investigate in-plane 
shear loading of composite armor.



Questions?
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