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Abstract 
 
Piezoelectric materials possess tremendous potential in twenty-first century engineering 
applications.  A high-fidelity model is sought that can more accurately predict 
piezoelectric behavior by embedding parameters typically associated with the fine scale 
(i.e. atomic scale)  into contemporary piezoelectric macro scale formulation.  The 
research presented is theoretical and demonstrates how this can be realized.  The material 
examined is lead-zirconate-titanate (PZT).  The model presented utilizes an energy 
potential based on atomistic attractive forces to develop an elastic modulus that is 
incorporated into classical macro scale piezoelectric governing equations – in-lieu-of the 
standard elasticity tensor.  Also presented will be ideas for future work where-by the 
atomistic modulus is utilized in a variational multiscale environment. 
 
 
1 Introduction 
 
Piezoelectric materials possess the unique property that when subjected to a deformation 
they produce electricity.  Conversely, when these materials are subjected to an electric 
field, they undergo deformation.   This unique property has been exploited by researchers 
and engineers to achieve desired effects – such as in the design of the ignition system in 
the rocket propelled grenade launcher (RPG) – shown in Figure 1.2 – and continues to 
intrigue researchers with its promise in the design of new systems and devices.   New 
piezoelectric applications are limited only by the imagination.  Figure 1.1 below shows  
rotor blade research conducted at the University of Maryland in an attempt to  design 
smart controllable blades that have desirable twist characteristics.  
 

     
                                                                  

Figure 1.1  Smart controllable 
rotorcraft twist research. 
    http://www.enae.umd.edu/AGRC/pict/ 

Figure 1.2  Rocket Propelled Grenade launcher. 
                        http://science.howstuffworks.com/rpg3.htm 

 
At the United States Military Academy (USMA), students and researchers (Labo, 2005) 
have researched the incorporation of piezoelectric materials in combat boots (See Figure 
1.3 and Figure 1.4).  This research was motivated by an attempt to capture the excess 
energy that is generated during the natural gait of a soldier’s step.   Other uses of 
piezoelectric materials include sophisticated power generation systems for micro sensors 



and micro-electro-mechanical systems (MEMS) devices,; and household uses such as 
ignition switches for propane barbeque grills. 

        
 
 
Figure 1.3  Piezoelectric board inserted 
into a combat boot. 

Figure 1.4  Piezoelectric board. 

 
 
 
2 PZT Monoclinic Structure 
 
The introduction to piezoelectric materials mentioned above motivates an explanation of 
how piezoelectric materials work.  To do this,, the molecular make up of these materials 
must be examined.  To limit the scope of this explanation – and stay within the context of 
the research at hand – the piezoelectric material   will be discussed.  The 
material  (see Figure 2.1) is a subset of piezoelectric materials called 
PZTs  that contain lead (Pb), zirconim (Zi), and titanium (Ti).  This material is also a 
subset of materials called Perovskites that are composed of atoms of the form .  In 

,  Pb is the A atom and either Zr or Ti (randomly distributed) is the B 
atom.   

348.052.0 OTiPbZr

348.052.0 OTiPbZr
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Figure 2.1  The  (PZT) molecule (Rabe, 2002). 348.052.0 OTiPbZr
 
The author of Figure 1.1 (Rabe, 2002). aptly describe this molecule’s behavior as 
follows: 
 

The ideal perovskite structure (ABO ) centred on a, the B 
site (Ti/Zr) and b, the A site (Pb). In the piezoelectric material 
PZT the Zr and Ti atoms are randomly distributed on the B sites. 
Using first-principles calculations Grinberg and colleagues  show 
that each Pb atom displaces preferentially towards square green 
faces with the largest Ti fraction. These local distortions can be 
correlated with global structure and behaviour. For example, in 
PZT the displacement of the metal ions (Pb, Ti and Zr) away from 
the centre of their oxygen cages generates local polarization and 
ultimately ferroelectricity. c, The net polarization and overall 
structure of PZT changes with the ratio of Ti:Zr atoms, as shown in 
the x−T phase diagram. The six structural phases of PZT at 
ambient pressure are mostly ferroelectric, with the exception of 

3

2

antiferroelectric behaviour (A) near PbZrO3 and a paraelectric cubic 
phase (C) at high temperatures. Grinberg et al. show that the 
complex phase behaviour of different Zr/Ti compositions can be 
explained by averaging the changing distribution of Pb 
displacements, which depend on their local environment. T = Ti-
rich tetragonal phase; R = rhombohedral phase; M = monoclinic 
ferroelectric phase. 

 
 

3 Notation 
 
The following portion of this paper concerns itself with incorporating the piezoelectric 
behavior of the PZT molecule shown above into a mathematical formulation which can in 
turn be implemented by computational methods.  It is appropriate at this point to make 
clear distinction of the notation used throughout the rest of this paper.  To discern 
between scalar and tensoral variables, we will use the standard indicial notation  for 
first order tensors (i.e. vector variables),  for second order tensors,  for third order 
tensors, and so on.  In a 3D calculation, all tensor and vector indices span the range 
(1,2,and 3).  Variables with no indices will be understood to be scalar quantities.  

iu

iju ikju



Moreover,  variables in bold font (e.g. ) will be understood to be tensor variables (order 
implied by usage) and unbold font will  imply scalar quantities.  When discussing 
atomistic relationships, atom labels will be denoted by the lone indices i, j, or k in 
parentheses, usually as superscripts.   For example,  (or ) is the position vector 
from atom i to atom j (see Figure 5.1). 

u
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 In this paper, the term fine-scale refers to  events occurring at atomistic scales on 
the order of  ten Angstroms, while the term macro-scale refers to events occurring at 
scales larger than 100 microns (i.e. visible to the naked eye).  The term coarse-scale is 
also seen in the paper and is to have a meaning synonymous with macro-scale. 
 
 

4 Atomistic Behavior and the Constitutive Equation 
 
In formulating mathematical equations to model the physical world, material properties 
are incorporated via constitutive equations.  The classical constitutive equation used in 
solid mechanics on the macro-scale is Hooke’s Law and the tensor variable possessing 
the material behavior is the Elasticity Tensor  denoted .  Hooke’s Law is stated as:  IJKLC
 

KLIJKLIJ ECS =  
 
where  is the stress tensor and  the strain tensor.  In a loose sense,  embodies 
the forces acting on a body while embodies the displacements that occur as a result 
of these forces.  It is a reasonable assumption, therefore, that if material behavior 
normally associated with the PZT fine-scale is to be mathematically embedded into 
equations describing the macro-scale,  the elasticity tensor seen in Hooke’s law is where 
the embedding should occur.   Needed for the research at hand is the formulation of an 
elasticity tensor which encapsulates PZT atomistic behavior. 

IJS KLE IJS

KLE

 
5 Atomistic Elasticity Tensor 
 
 
5.1 Atomistic Kinematics 
 
Figure 5.1.1 depicts three atoms i, j, and k in the reference and current configurations.   
These atoms are located by Cartesian position vectors and 

in the reference and current configurations respectively.  The atoms may 
locally be described by their proximity to each other by the position vectors 

and also shown in respective configurations.   
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Figure 5.1  Three atoms depicted in the reference and current configurations. 
 
 

The angle created by two vectors  subtending atom i is defined by the symbol 
where the atom subtended is the middle index.  The cosine of this angle is 

therefore 
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and )()()( ijijijr rr ⋅= . 
 
We note that all kinematic variables defined for any three atoms can be simplified to two 
vectors.  For example,  and ),( )()()()( ikijjikjik rrθθ = )()()( ijikjk rrr −= .  Therefore, in what 
follows, the two truly independent variables are  and . )(ijr )(ikr
 
5.2 Definition of Potential 
 
The form of the potential is given as 
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 (1) 
where the first summation denotes pair interactions and the second summation the 
interactions of atom triples.  Note that there is no factor of ½ contained in the equation 
because the summation conditions disallow double-counting.  The pair and triple terms 
are defined as 
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where the constant ε is chosen so as to give the minimum of f2  at -1, and σ is chosen to 
make f2(2 6

1 )  vanish.  These constants are given for Si in (Stillinger and Weber, 1985). 
 
The pair term is a function of the scalar distance between two atoms i and j defined as 
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where A, B, p, q, and a are constants.  Noticeable in this equation is that the range of the 
pair interactions is limited to a circular region of radius a around each atom.  The triple 
interaction is defined as 
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Based on the discussion above regarding the fact that there are only two true independent 
variables, we can redefine h in the form of some functions )(ih  and  so that equation 
(4) can be rewritten as 
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5.3 Finite Strain and Classical Continuum Mechanics 
 
The atoms labeled i, j, and k are assumed in the deformed configuration.  The equations 
thus far are only considering the instantaneous configuration to evaluate the energies 
from equation (1).  From a Lagrangian continuum solid mechanics perspective, it is 



important to know how those atoms got there.  We therefore define atoms labeled I, J, 
and K as the reference configuration relative to the original Cartesian basis.   
 
We consider only affine deformations, meaning that the deformation process at the 
atomic scale is assumed to work in the same way as the continuum scale.  Under this one-
to-one mapping assumption, position vectors in the reference configuration R get 
transformed to the current configuration r through the deformation tensor F, 
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where repeated indices are assumed summation.   
 
We use the conventional strain measures for the Green strain and Right Cauchy-Green 
strain, respectively as follows 
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We can then obtain a host of elasticity tensors by taking second derivatives of a strain 
energy function.  From equation (1), the strain energy function is defined by 

( )( )(1 Rr
N
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where N is the number of atoms.  Then different types of elasticity tensors may be 
determined.  For example, we may choose among the following fourth order tensors, 
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where the last tensor is based on the infinitesimal strain and would give the standard 
infinitesimal elastic constants after taking appropriate directional derivatives. 
 
The process for obtaining any of the elastic property tensors is identical.  We make 
repeated use of the chain rule to analytically determine the derivatives.  Let us consider 
the following elastic tensor as the illustrative example, 
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By making use of earlier definitions, we proceed as follows 
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It is important to recall that the summation convention does not apply to indices in 
parentheses.  To complete the process of equation (13), we use the definition in equation 
(9) to obtain 
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The only task that now remains is to evaluate the derivatives of the strain energy potential 
Φ with respect to the atomic vectors.  This is also a straightforward procedure.  We start 
with the first derivative 
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where the derivative in the first term is given by 
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A similar derivative needs to be evaluated for . )(ih
 
Likewise, the key second derivatives that need to be derived are 
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By observation of the equations thus far, the elastic stiffness tensor is fully determined.  
The remaining task is extensive symbolic manipulations to obtain a closed form 
expression (if so desired) of the tensor, with repeated use of partial derivatives and chain 
rule multiplications.  Due to the algebraic complexity of the potential function, the final 
expression is generally lengthy, but still obtainable.   



 
6 Variational Multiscale Formulation 

e displacement of PZT atoms 
 proper paths and distances within the atomic lattice, needed is a coupling between these atomic 

 
While the Elasticity Tensor formulated in Section 5 will confine th
to
displacements and the electric field E~ .  Moreover, the governing equations for E~  (i.e. 
Maxwell’s Equations) must be present in the overarching mathematical model since they 
share a role equal to those of solid mechanics regarding  piezoelectric phenomen
allow for  this, the equations used in this model will be formulated in a variational 
multiscale framework.   
 
6.1 Multiscale Defor

on.  To 

mation 

t, the displacement of any point in the body 
ssumed synonymous with an atom’s displacement) is decomposed into two parts 

al 
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uIn the variational multiscale contex

(a
αu and βu  whereby αu  is a local displacement on the fine-scale, and βu  is a glob

displacement on the macro-scale.  Figure  6.1 shows a pictorial example of this noti

 
Figure 6.1  Example of multiscale deformation as seen by a piezoelectric board experiencing bending.   

 



Figure 6.2 below demonstrates some additional key points regarding variational 
multiscale deformation.  In Figure 6.2, a hypothetically thin rod is used to demonstrate 
that: 1)  Displacement  αu  will have a magnitude on the order of Angstroms, while  βu
will have a magnitude on the order of meters; 2) Strain is scale independent – a point that 
will be very important in subsequent sections; and 3) Displacement βu  occurs due to the 
summation of a very large number of  fine-scale displacements αu  occurring over the 
entire body. 
  

 

 
 
 

 
 Figure 6.2  Some key points made by observing the deformations in a hypothetical thin wire.  

 

.2 Multiscale Kinematics 

o accommodate fine-scale and coarse-scale equations, an additional intermediate configuration 

 
6
 
T
β  is introduced to the two configuration arrangement seen in classical continuum mechanics (See
igure 5.1) .  The three configurations are shown in Figure 6.2.  In this figure, the position of a 

point in the intermediate configuration is denoted by 

 
F

X . 



 
 

Figure 6.3  Multiscale kinematics.  Three configurations are used in this framework – reference, 
intermediate, and current.  (Creighton, 2004). 
 
 
With these configurations, a logical definition of variables leads to simplistic equations. 
If displacements are defined as 

XX:uα −=  
 

Xx:uβ −=  
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then consequently  as is desired.  Defining the deformation gradients as βα uuu +=
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yields the equations 
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where the nabla symbol represents derivatives taken with respect the current position 

vector x such that 
x∂
•∂

=•∇
)(:)( .  From these equations we define the multiscale Green 

tensor as 
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and the multiscale Right Cauchy-Green tensor as 
 

βββ FFC
T

=:  
 
For a rigorous derivation of the variables, in this section see (Creighton, 2004). 
 
6.3 Multiscale Governing Equations of Solid Mechanics 
 
With the kinematic variables defined, we recall macro-scale equations.  Equations below 
are 1) The conservation of linear momentum; 2) A push forward of the Second Piola-
Kirchhoff Stress tensor S to the current configuration; and 3) Hooke’s Law.  Note the 
appropriateness of theβ superscript in these macro-scale equations (recall that is  
macro-scale displacement).  

βu

 
βuρbσ &&=+⋅∇               (6.3.1)                                           
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Recalling Equation 12 from Section 5, the multiscale version of this equation becomes 
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It should be noted that using in the derivation of the atomistic elasticity tensor C  is 
appropriate since strains are scale independent (see Key Point #2 in Figure 6.2 to put this 

βC



in context).  Conversely, incorporating the macro-scale displacement variable into the 
formulation of  would be inappropriate due to its scale. 

βu
C

 
6.4 Governing Equations of Electromagnetism 
 
The governing equations for electromagnetism are Maxwell’s Equations.   From these 
equations, a relationship for the electric field vector E~  can be written 
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See (Weidlinger Associates, 1991) for the derivation.  Recognizing that the force exerted 
on a particle (or atom) of charge in an electric field is  oq
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and that Newton’s Second Law for the atom is 
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These two equations can be combined to create the equation 
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where  
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qq o=~    and   m = 
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  for the PZT at hand. 

 
Consequently , equations (6.3.1), (6.4.1), and (6.4.2) constitute three equations and three 
unknowns  which adequately describe the problem. 
 
 
 
 
 
 
 
 
 
 
 



 
6.5 Variational Equations 
 
Casting equations (6.3.1), (6.4.1), and (6.4.2) into the weak form – for a numerical 
solution by the finite element method – the problem is expressed mathematically as  
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With unknown: }~{E  
 
 
7 Conclusions & Future Work 
 
7.1  Atomistic Elasticity Tensor 
 
The elastic property tensor will be a 3333 ×××  fourth order tensor which will have 81 
nontrivial terms. All trivial/nontrivial terms and symmetries associated with the elastic 
tensor are determined solely by the crystal and are NOT prescribed a priori.  The 
challenge for the PZT structure at hand will be to capture the behavior of the different 
types of atoms (which vary significantly) when formulating the elasticity tensor .  
Moreover, using the potential in Equation 5.2 (1) is meant merely as an illustrative 
example of the procedure since it neglects long range interactions common in 
piezoelectric materials. 

C

 
7.1  Multiscale Formulation 
 
Although the equations are all valid, issues concerning stability have not been addressed 
and will not be apparent until the stated weak form equations have been implemented and 
tested.  Boundary conditions for and  also need to be addressed but can be modeled 
from earlier work in the field.  An initial approach might be to use periodic boundary 
conditions for  (used in most fine-scale molecular dynamics simulations), and 
boundary conditions typical of classic macro-scale solid mechanics for . 

αu βu
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