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ABSTRACT

Lie symmetries of differential equations are diffeomorphisms which map a solution of
the given equation to another solution. There are many applications of symmetric groups
to differential equations. Most of the well-known techniques for solving differential
equations are special cases of a few symmetry methods. We can use symmetries to
find exact solutions of differential equations. In addition, using known solutions and a
symmetry group, one can compute new solutions for a differential equation.

Two applications we will discuss are the use of symmetry groups to find explicit
group-invariant solutions and the classification of differential equations by their symme-
try groups. We use the first of these applications to compare invariant solutions arising
through symmetries with invariant solutions, such as center manifolds, which are found
with the use of dynamical systems theory. The consideration of classifying differential
equations according to their symmetry groups may be directly applicable to those dif-
ferential equations which arise in the work of scientists at the Natick Soldier Center. We
hope future work on classification will allow the researchers an easier path to finding
a solution to a system of differential equations outside of the traditional methods that
have been employed. In addition, this research will enable enhanced interaction with
respect to the solving of various applied mathematics problems at the Natick Soldier
Center.

We present preliminary results on Lie symmetries of differential equations employed
in the research of scientists at the Natick Soldier Center. One example of particular
interest is a model used to characterize and predict microbial growth-decay kinetics in
foods.

1. Introduction

This article introduces two important concepts in the study of differential equations

and dynamical systems. First considered are Lie symmetries, which are diffeomorphisms

mapping the set of solutions of a differential equation to itself. These symmetries give rise

to methods of solving differential equations. Additionally, they lead to a classification of

differential equations by the symmetries acting on the given equations. One important

outcome of these symmetries is the set of manifolds that are invariant under the action of
1
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the symmetry group on a differential equation. Thus the other main study of this paper

concerns invariant manifolds which arise in the study of a dynamical system, namely

the stable, unstable and center manifolds. One way to link the two ideas is to ask how

a Lie symmetry of a system acts on these manifolds. Stable and unstable manifolds will

remain invariant under the symmetry action, while the action on the center manifold is

more complicated. Some recent results from the literature on symmetry actions on center

manifolds are discussed. Another important link between the study of Lie symmetries

and the dynamics of a system of differential equations is that they both provide ways to

investigate properties of a system by reducing to a manifold of dimension smaller than

that of the original system. As discussed below, differential invariants of Lie symmetries

and center manifolds both provide ways to accomplish this. In future work we hope to

apply these theoretical results to systems of equations arising in the research of scientists

at the Natick Soldier Research Center. This paper concludes with an example of one

such system that we will consider with respect to these ideas.

2. Lie Symmetries

Lie symmetries are diffeomorphisms mapping a set of solutions of a given differential

equation to itself. Consider a differential equation y(n) = ω(x, y, y′, . . . , y(n−1)) where

y(k) ≡ dky

dxk
and ω is assumed smooth. Next consider a diffeomorphism Γ : (x, y) 7→ (x̂, ŷ).

Let ŷ(k) = Dxŷ(k−1)

Dxx̂
, with Dx = ∂x + y′∂y + y′′∂y′ + · · · the total derivative in x. Then

a diffeomorphism is a Lie symmetry if it maps a solution of a differential equation to

another solution. Mathematically, this is equivalent to ŷ(n) = ω(x̂, ŷ, ŷ′, . . . , ŷ(n−1)) when

y(n) = ω(x, y, y′, . . . , y(n−1)). This is called the symmetry condition. We illustrate how

this condition is used for symmetries on the plane through the following examples.

Example 2.1. Consider
dy

dx
=

2y

x
with (x̂, ŷ) = (eεx, e−2εy). To show that Γ defined by

(x̂, ŷ) is a Lie symmetry, we need to show that
dŷ

dx̂
=

2ŷ

x̂
. We calculate

dŷ

dx̂
=
Dxŷ

Dxx̂
=

e−2εy′

eε
=
e−2ε

eε

2y

x
=

2ŷ

x̂
. Thus this mapping defines a nontrivial one-parameter Lie group

action on the given differential equation. A solution curve y = c1x
2 is mapped to the

curve defined by (x̂, ŷ) = (eεx, c1e
−εx2), or ŷ = c1e

−3εx̂2.

An example of a trivial action on a differential equation is the Lie group (x̂, ŷ) =

(x+ ε, y) acting on y′ = 0 since the solution curves for the equation are the lines y = c

for some constant c and the action simply shifts a point on the line to another point on

the same line.

Geometrically a Lie symmetry relates to the tangent space of the orbits of points under

the action of the symmetry. Consider an ODE on the plane and define ξ(x, y) =
dx̂

dε

∣∣∣∣
ε=0

and η(x, y) =
dŷ

dε

∣∣∣∣
ε=0

. Then (ξ(x, y), η(x, y)) is the tangent vector to the orbit under
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the Lie symmetry at the point (x, y) on a solution curve. These terms ξ = ξ(x, y)

and η = η(x, y) are called infinitesimals and the operator X = ξ∂x + η∂y is called

an infinitesimal generator of the Lie symmetry given by (x̂, ŷ). If we can find the

infinitesimals of the symmetry, then we can find the symmetry itself as in the following

example.

Example 2.2. Suppose that we have found that a given differential equation has a

symmetry with infinitesimal generator X = ∂x + y∂y. We calculate the one-parameter

Lie group associated with this generator. Our infinitesimals (ξ, η) = (1, y) give
dx̂

dε
= 1,

and
dŷ

dε
= ŷ for ε = 0. We solve these equations with the initial conditions that at

ε = 0, (x̂(x, y), ŷ(x, y)) = (x, y). Thus x̂(x, y; ε) = ε + A(x, y) = ε + x and ŷ(x, y; ε) =

B(x, y)eε = yeε. Our one-parameter Lie group of symmetries is then (x̂, ŷ) = (ε+x, yeε).

We extend these ideas of one-parameter symmetries in the plane to Lie symmetries

with more than one parameter and to higher order differential equations. We can nat-

urally extend a diffeomorphism Γ : (x, y) 7→ (x̂, ŷ) in the plane to a diffeomorphism in

the (n+ 2)-dimensional Euclidean space with variables x, y, y′, . . . , y(n). This extension

is given by:

Γ : (x, y, y′, . . . , y(n)) 7→ (x̂, ŷ, ŷ′, . . . , ŷ(n))

with ŷ(k) =
Dxŷ

(k−1)

Dxx̂
as defined above. This map is called the nth prolongation of

Γ. We use this prolongation along with the symmetry condition to find Lie symmetries

for a given differential equation. We can linearize both the symmetry condition and

the prolongation by considering the Taylor expansions in the parameter ε. For the

diffeomorphism, we obtain:

x̂ = x+ εξ +O(ε2)

ŷ = y + εη +O(ε2)

ŷ(k) = y(k) + εη(k) +O(ε2).

Thus we have ŷ(n) = y(n) + εη(n) + O(ε2). From the symmetry condition ŷ(n) =

ω(x̂, ŷ′, . . . , ŷ(n−1)), we obtain ŷ(n) = ω + εDxω + O(ε2). By equating the ε terms,

we find

(1) η(n) = ξωx + ηωy + η(1)ωy′ + · · ·+ η(n−1)ωy(n−1) .

This is the linearized symmetry condition, which means that if this equality holds

for all x and y, then ξ and η are infinitesimals of our Lie symmetry.

From ŷ(k), we find the terms η(k). These terms are calculated recursively by

η(k)(x, y, y′, . . . , y(k)) = Dxη
(k−1) − y(k)Dxξ.
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We list the first few:

η(1) = ηx + (ηy − ξx)y
′ − ξyy

′2;

η(2) = ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3

+{ηy − 2ξx − 3ξyy
′}y′′;

η(3) = ηxxx + (3ηxxy − ξxxx)y
′ + 3(ηxyy − ξxxy)y

′2 + (ηyyy − 3ξxyy)y
′3

−ξyyyy
′4 + 3{ηxy − ξxx + (ηyy − 3ξxy)y

′ − 2ξyyy
′2}y′′

−3ξyy
′′2 + {ηy − 3ξx − 4ξyy

′}y′′′.

We can use the prolongation of the infinitesimal generator to rewrite the linearized

symmetry condition. We find X(n) = ξ∂x +η∂y +η(1)∂y′ +η(2)∂y(2) + · · ·+η(n)∂y(n) . Then

(1) is equivalent to

(2) X(n)
(
y(n) − ω(x, y, y′, . . . , y(n−1))

)
= 0.

Thus if we can find the infinitesimals ξ and η such that equation (2) holds, we can

find the symmetry Γ : (x, y) 7→ (x̂, ŷ) of a differential equation as in the example above.

Example 2.3. The symmetries of the differential equation y′′ = 0.

In this case we find Γ : (x, y) 7→ (x̂, ŷ) such that ŷ′′ = 0 when y′′ = 0. We begin as

usual with the infinitesimal generator X = ξ∂x + η∂y. Using the linearized symmetry

condition X(2)(y′′) = 0, we find the necessary condition on ξ and η to be η(2) = 0. Then

the following must hold:

η(2) = ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3

+{ηy − 2ξx − 3ξyy
′}y′′

= ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3 (since y′′ = 0)

= 0

Since ξ and η are functions of x and y, we look at this polynomial in the derivative

of y and set each coefficient equal to zero. This results in a series of partial differential

equations. These PDEs are called determining equations for the Lie symmetry.

In this case we have the following determining equations:

ηxx = 0;(1)

2ηxy − ξxx = 0;(2)

ηyy − 2ξxy = 0;(3)

ξyy = 0(4)

From (4), we see that ξ(x, y) = A(x)y + B(x). Then from (3) we find ηyy = 2A′(x)

and thus η(x, y) = A′(x)y2 + C(x)y + D(x). Using these results, (2) gives 4A′′(x)y +

2C ′(x) = A′′(x)y + B′′(x) which must hold for all values of y. Equating coefficients
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of y and constant terms, we find A′′(x) = 0, thus A(x) = α1x + α2 and 2C ′(x) =

B′′(x). Finally, from (4) we find C ′′(x) = 0 and D′′(x) = 0, thus C(x) = α3x+ α4 and

D(x) = α5x+α6. Returning to the relationship between B(x) and C(x) from (2), we find

B(x) = α3x
2+α7x+α8. Thus our infinitesimals are ξ(x, y) = α1xy+α2y+α3x

2+α7x+α8

and η(x, y) = α1y
2 +α3xy+α4y+α5x+α6. We have found that the differential equation

y′′ = 0 has an eight-parameter Lie group of symmetries. Thus we have 8 different one-

parameter groups defined by the infinitesimal generators as follows:

X1 = xy X5 = x

X2 = y∂x X6 = ∂y

X3 = x2∂x + xy∂y X7 = x∂x

X4 = y∂y X8 = ∂x

Considering X8, we see that the one-parameter Lie group associated to this infinites-

imal generator is the group defined by the map Γ : (x, y) 7→ (x + ε, y) since ξ8 = 1 and

η8 = 0. We can similarly find x̂i, ŷi for i = 1, . . . , 7.

The set of infinitesimal generators forms a Lie algebra. In the example above, we

have an eight dimensional Lie algebra with basis {Xi}, i = 1, . . . , 8. In general, the

dimension of the Lie algebra is constrained by the order of the ODE (see [H] p 51).

Recall that a Lie algebra has a bracket structure where the bracket is an operator such

that [Xi, Xj] = XiXj −XjXi. The Lie bracket satisfies the following:

(1) Bilinearity:

[aXi + bXj, Xk] = a[Xi, Xk] + b[Xj, Xk], [Xi, aXj + bXk] = a[Xi, Xj] + b[Xi, Xk]

(2) Skew symmetry: [Xi, Xj] = −[Xj, Xi]

(3) Jacobi Identity: [Xi, [Xj, Xk]] + [Xj, [Xk, Xi]] + [Xk, [Xi, Xj]] = 0.

In the example above we can calculate all the brackets and thus determine the Lie

algebra. Just considering [X1, Xi], we see [X1, X4] = −X1 and [X1, X5] = −X3 while

the bracket is zero for all other Xi. If we had another differential equation admitting

an eight dimensional Lie algebra, we would be able to determine if the two equations lie

in the same class according to Lie symmetry classifications. Two differential equations

with the same infinitesimal generators (under a canonical basis) are defined to be in the

same class of equations. Thus classifying Lie algebras arising from Lie symmetries gives

a classification of the differential equations associated to these Lie algebras. According

to Hydon ([H] p 176), the classification has been done for scalar ODEs, but not for PDEs

or systems of ODEs, which must be handled on a case-by-case basis. This is something

we will investigate further in later work.

In his work of 1883, Lie classified arbitrary order ordinary differential equations. For

example in his consideration of second order ODEs he found that they admit Lie algebras

of dimension 1, 2, 3, 4, or 8 only. Considering only second order ODEs that are associated

with two-dimensional Lie algebras, Lie found that there are four canonical second order

ODEs. In terms of canoncial coordinates, the four types of differential equations are:
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(1) y′′ = f(y′)

(2) y′′ = f(x)

(3) y′′ = 1
x
f(y′)

(4) y′′ = f(x)y′

The derivation of these canonical differential equations can be found in [I] along with a

discussion on the higher dimensional Lie algebras associated to second order ODEs. In

future work we aim to classify the differential equations used in the research of scientists

at the Natick Soldier Center according to their Lie symmetries. We hope to find that

there are connections among equations used in the research in different areas based on

these symmetries.

3. Invariant Solutions

As we have discussed, Lie symmetries act on solutions of differential equations by

mapping the set of solutions to itself. One set of solutions that are of particular interest

are those which remain invariant under the action of a Lie symmetry. Let us focus our

discussion of equations in the plane, as these ideas are extendable to higher dimensions.

Under the action of a one-parameter Lie group, any point (x, y) on a solution curve C

defined by y = f(x) is mapped to another point (x̂, ŷ) on another (possibly the same)

solution curve. If for every point (x, y) on C, (x̂, ŷ) is also on C, we say that y = f(x) is

an invariant solution. In this case, the orbit of the point (x, y) will lie in the curve C. If a

solution is not an invariant solution, the orbit of a point on C and the tangent vector to

the curve C at that point will be transverse. Recall that the tangent vector to the orbit

at a point (x, y) on a solution curve is given by (ξ(x, y), η(x, y)). Thus for a given solution

curve (x, y), with tangent vector (1, y′), the curve is invariant if at each point (x, y) on the

curve, the vectors (1, y′) and (ξ(x, y), η(x, y)) are not transverse. Mathematically, this is

equivalent to the following condition. A solution curve C given by y = f(x) is invariant

under a Lie symmetry if Q(x, y, y′) = 0 on C, where Q(x, y, y′) = η(x, y)− y′ξ(x, y). For

more details see [H] p 19.

Thus given any one-parameter Lie group acting on a differential equation, we should

be able to find all invariant solutions. If a differential equation admits an r-parameter Lie

group, each of the infinitesimal generators may have associated invariant solutions. It can

then be investigated as to whether an invariant solution under one generator is invariant

under all generators. By considering these infinitesimal generators themselves we do

not exhaust the list of possible invariant solutions. If we take a combination of these

generators with one parameter, we again have a one-parameter Lie group acting on the

differential equation. Different invariant solutions may arise in these cases. Thus there

may be many invariant solutions and we can use Lie algebras to classify the invariant

solutions. This will be investigated further in future work. See [H] Chapter 10 for more

details.
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Example 3.1. According to Carr ([Ca], p 177), the differential equation
dy

dx
=
y3 + x2y − y − x

xy2 + x3 + y − x
is invariant under the rotation group, given by X = −y∂x +x∂y.

We find an invariant solution of the differential equation. In this case, Q(x, y, y′) =

η(x, y)− y′ξ(x, y) = x+ yy′ = 0 for an invariant solution. Solving the equation y′ =
−x
y

gives x2 + y2 = c for some constant c. Returning to the original differential equation

and making this substitution, we find that
dy

dx
=

(c− 1)y − x

(c− 1)x+ y
, which will equal y′ =

−x
y

if c = 1. Thus y = ±
√

1− x2 is a solution to the original differential equation which is

invariant under rotations.

4. Differential Invariants

In the previous section we discussed solutions that are invariant under the action

of a Lie group of symmetries. In this section we consider functions which leave the

differential equations invariant under the action of a Lie symmetry. The value of these

functions is that they allow us to reduce the order of a given differential equation, which

will hopefully aid in finding a solution of the original equation.

Let X be an infinitesimal generator for the Lie symmetries of a given ODE

y(n) = ω(x, y, y′, . . . , y(n−1)). The differential invariants of the group generated

by X are those nonconstant functions that are invariant under X and the prolonga-

tions of X. A nonconstant function I is called a kth order differential invariant if

X(k)I(x, y, y′, . . . , y(k)) = 0.

Example 4.1. The differential invariants of the group generated by X = x∂x − y∂y. In

this case ξ = x, η = −y and η(1) = −2y′. The first fundamental differential invariant

r(x, y) is a first integral of
dx

x
=

dy

−y
. This is a simple separable differential equation

with solution ln |x| = − ln |y| + c. Then we let r(x, y) = xy. Then using this, we

find v(x, y, y′), the second fundamental differential invariant, which is a first integral of
dx

x
=
dy

−y
=
dy′

η(1)
=

dy′

−2y′
. Solving

dx

x
=

dy′

−2y′
gives ln |x| = −1

2
ln |y′|+ c, resulting in a

choice of v(x, y, y′) = x2y′. We write I = F (r(x, y), v(x, y, y′)) = F (xy, x2y′). Thus any

function invariant under the given symmetry is a function of r(x, y) and v(x, y, y′).

We can find differential invariants of ODEs with R−parameter Lie groups of sym-

metries similarly. Let X1, X2, . . . , XR be the set of independent infinitesimal gener-

ators for a given ODE with Xi = ξi∂x + ηi∂y. In this case a nonconstant function
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I(x, y, y′, . . . , y(n−1)) is a differential invariant if it satisfies the following matrix equa-

tion:

(5)


ξ1 η1 η

(1)
1 · · · η

(R)
1

ξ2 η2 η
(1)
2 · · · η

(R)
2

...
...

...
...

ξR ηR η
(1)
R · · · η

(R)
R




Ix

Iy

Iy′
...

Iy(R)

 =


0

0
...

0


Using this equation we are always able to find the fundamental differential invari-

ants rR and vR from which all higher order differential invariants are calculated. By

Gaussian elimination we first simplify the matrix equation and then we use the rela-

tionships given by the equation to reduce to two relationships which define the fun-

damental differential invariants. Then we find the higher order differential invariants

v
(1)
R , v

(2)
R , . . . , v

(n−1−R)
R , where v

(1)
R =

dvR

drR

=
DxvR

DxrR

and v
(k)
R =

dkvR

drk
R

for any k.

Knowing the differential invariants for a group of transformations allows us to find all

differential equations with the given symmetry group. If rR and vR are the fundamental

differential invariants of an R−dimensional Lie group G, then every ODE with order

n ≥ R with G as its symmetry group, including the given one, can be written in terms

of the differential invariants of the group v
(n−R)
R = F (rR, vR, . . . , v

(n−1−R)
R ) for some

function F . We write the above in terms of x, y, . . . , y(n) and find a family of ODEs that

all have G as a symmetry group. It should be noted that some of these ODEs might

have additional symmetries as well.

Example 4.2. A 3-parameter Lie group of symmetries ([H] p 77). The ODE y(iv) =
2
y
(1−y′)y′′′ has the 3-parameter group of Lie symmetries with generators X1 = ∂x, X2 =

x∂x + y∂y, X3 = x2∂x + 2xy∂y. From these generators we calculate the fundamental

differential invariants by solving

 1 0 0 0 0

x y 0 −y′′ −2y′′′

x2 2xy 2y (2y′ − 2xy′′) −4xy′′′




Ix

Iy

Iy′

Iy′′

Iy′′′

 =


0

0

0

0

0

 .

Reducing the system results in the following 3 equations which determine the differen-

tial invariants:

Ix = 0(6)

yIy − y′′Iy′′ − 2y′′′Iy′′′ = 0(7)

yIy′ + y′Iy′′ = 0(8)
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Using the method of characteristics, from equation (8) we have
dy′

y
=

dy′′

y′
, which is

solved by c = 2yy′′ − y′2, giving the first fundamental differential invariant, r(x, y) =

2yy′′−y′2 and the function I = I(x, y, 2yy′′−y′2, y′′′). Now from equation (7) the second

fundamental differential invariant is a first integral of
dy

y
=

dy′′

−y′′
=

dy′′′

−2y′′′
. Solving

dy

y
=

dy′′′

−2y′′′
, we find y2y′′′ = k resulting in I = I(x, 2yy′′ − y′2, y2y′′′). Finally, since

Ix = 0, any differential invariant function is of the form I(2yy′′ − y′2, y2y′′′). Thus the

fundamental differential invariants are r3 = 2yy′′ − y′2 and v3 = y2y′′′ and we can now

calculate higher order differential invariants as follows:

dv3

dr3
=
Dxv3

Dxr3
=

2yy′y′′′ + y(iv)y2

2y′y′′ − 2y′y′′ + 2yy′′′
= y′ +

y(iv)y

2y′′′
.

Substituting the original equation y(iv) =
2

y
(1−y′)y′′′ into this results in

dv3

dr3
= y′+1−y′ =

1, thus the ODE of this example is equivalent to the equation
dv3

dr3
= 1 whose solution is

v3 = r3 + c, or in terms of x and y, y′′′ =
2yy′′ − y′2 + c

y2
. Thus, this 3rd order ODE

is invariant under the three-parameter Lie group generated by X1, X2 and X3 above.

Additionally, any other ODE of order n ≥ 3 which is invariant under this same group

can be written as a function of the differential invariants v
(n−3)
3 = F

(
r3, v3, . . . , v

(n−4)
3

)
.

5. Center Manifolds

We now turn our attention to some concepts from dynamical system theory. Our main

objective is to find the center manifolds of a system. By reducing to the center manifold,

which is a lower dimensional object than the whole system, we are able to investigate

the dynamics of the system. In future work we will investigate the existence of center

manifolds for systems arising in the work of the scientists at the Natick Soldier Center

and then consider the dynamics of the systems based on the results on center manifolds.

First we define what we mean by an invariant manifold. Using ẋ to denote the

derivative of x with respect to time t, consider a system of differential equations ẋ = F (x)

with x ∈ Rn. A set S ⊆ Rn is said to be an invariant manifold if for x0 ∈ S, the

solution x(t), with x(0) = x0 remains in S for all t, that is, the solution curve lies entirely

in S. The manifold S is locally invariant if x(t) ∈ S for |t| < T for some fixed real

number T > 0.

Given a nonlinear system of differential equations ẋ = F (x) with a critical point at

the origin, we can write the system in standard form as follows:

ẋ = Ax+ f(x, y, z)(9)

ẏ = By + g(x, y, z)

ż = Cz + j(x, y, z)
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where A has eigenvalues with zero real parts, B has eigenvalues with negative real parts

and C has eigenvalues with positive real parts and the functions f(x, y, z), g(x, y, z)

and j(x, y, z) are all C2. The system gives rise to three invariant manifolds: stable,

unstable and center manifolds. The stable and unstable manifolds are each unique and

correspond respectively to the eigenspaces of the eigenvalues with negative and positive

real parts. Thus the stable (unstable) manifold consists of all the solutions which decay

toward (grow from) the origin exponentially. The eigenspace of the eigenvalues with zero

real part relates to the center manifold. The center manifold is an invariant manifold

y = h(x) with h smooth and h(0) = h′(0) = 0. Geometrically we can think of the

center manifold as an invariant manifold tangent to the center eigenspace at the origin.

The center eigenspace is the space spanned by a basis of eigenvectors corresponding to

the eigenvalues of the linearized system with zero real part. Additionally, the center

manifold consists of all solutions which do not exponentially decay to or expand from

the origin.

According to Guckenheimer and Holmes [GH] we can assume that the unstable man-

ifold is empty for the sake of simplicity and because physically this is most interesting.

Thus we consider the system:

u̇ = Ãu+ f̃(u, v)(10)

v̇ = B̃v + g̃(u, v)

Given a system of this form (10), with u ∈ Rn, v ∈ Rm, if it is not in standard form,

we seek to write it as such. We first find the eigenvalues of the linearized system. The

corresponding eigenvectors give a transformation matrix T such that

(
u

v

)
= T

(
x

y

)
.

This allows us to write the system in standard form as follows:

ẋ = Ax+ f(x, y)(11)

ẏ = By + g(x, y)

where x ∈ Rn, y ∈ Rm, and A and B are constant matrices such that the eigenvalues of

A have zero real parts and the eigenvalues of B have negative real parts. The functions

f and g are C2 with f(0, 0) = g(0, 0) = 0 and f ′(0, 0) = g′(0, 0) = 0, where f ′(0, 0) =

Df(0), the Jacobian matrix at zero. If we can write a given system in the above form we

are guaranteed the existence of center manifolds by a standard result of center manifold

theory. That is, if we can write our system so that the linear terms have at least one

eigenvalue with zero real part and one with negative real part, we have center manifolds.

See [GH] or [Ca] for the proof of this result.
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To find a center manifold, we must solve the following system:

h(0) = 0(12)

h′(0) = 0

h′(x) (Ax+ f(x, h(x))) = Bh(x) + g(x, h(x))

which follows from y = h(x) and ḣ(x) = h′(x)ẋ. Solving this system is as difficult as

solving the original system, so we must determine a way to approximate the solution

to any desired degree of accuracy. For a function φ : Rn → Rm, which is C1 in a

neighborhood of the origin, define

(Mφ)(x) = φ′(x) (Ax+ f(x, φ(x)))−Bφ(x)− g(x, φ(x)).

Note that (Mh)(x) = 0. The following theorem gives that the center manifold h(x) is

approximated by φ(x) to the desired degree.

Theorem 5.1 ([Ca] Theorem 3 p 5). Let φ be a C1 mapping of a neighborhood of the

origin in Rn into Rm with φ(0) = 0 and φ′(0) = 0. Suppose that as x approaches 0,

(Mφ)(x) = O(|x|q) where q > 1. Then as x approaches 0, |h(x)− φ(x)| = O(|x|q).

We describe how to use this result to find the center manifold. Start with a set of

differential equations of the form (11). Then let φ(x) = ax2 + bx3 + · · · since this is

the smallest φ(x) that satisfies Theorem 5.1. Use the given system (11) to determine

(Mφ)(x). Define φ(x) to be the map such that (Mφ)(x) = O(|x|k) for some k > 2 and

let h(x) = φ(x) + O(|x|k), resulting in a center manifold h(x) to a degree of accuracy

of O(|x|k). If we desire a higher degree of accuracy, let φ̃(x) = φ(x) + ψ(x) where

ψ(x) = O(|x|k) and proceed with (Mφ̃)(x) as before. This process will be made clearer

with an example.

Example 5.2 ([Ca] Example 1 p 5). Consider the system

ẋ = xy + ax3 + by2x(13)

ẏ = −y + cx2 + dx2y

This system is already in standard form as f(x, y) = xy+ax3 +by2x and g(x, y) = cx2 +

dx2y, so it follows that f(0, 0) = g(0, 0) = 0 and f ′(0, 0) = g′(0, 0) = 0. Additionally, in

this example A = 0 and B = −1. We calculate (Mφ)(x):

(Mφ)(x) = φ′(x)(xφ(x) + ax3 + bφ(x)2x) + φ(x)− cx2 − dx2φ(x).

Let us assume that φ(x) = O(x2). Then φ(x) = αx2 + γx3 + · · · and we show that

(Mφ)(x) = φ(x) − cx2 + O(x4) as follows: φ′(x) = 2αx + 3γx2 + · · · , so multiplying

this by f(x, φ(x)) = xφ(x) + ax3 + bφ(x)2 results in O(x4) terms only. Then (Mφ)(x) =

O(x4) + φ(x) − cx2 − dx2φ(x) = φ(x) − cx2 + O(x4). If we define φ(x) = cx2, then

(Mφ)(x) = O(x4) and h(x) = φ(x) +O(x4) = cx2 +O(x4) by Theorem 5.1.
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Sometimes the first approximation found is not sufficient in terms of giving enough

information when considering the stability of solutions. In the above example, it is true

that if a + c = 0, we are unable to determine the stability of the zero solution. See

Carr ([Ca] p 6) for details. To obtain a better approximation for the center manifold

in the system above, we let φ(x) = cx2 + ψ(x) where ψ(x) = O(x4). Then φ′(x) =

2cx+ ψ′(x) = 2cx+O(x3) and we recalculate (Mφ)(x).

(Mφ)(x) = φ′(x)(xφ(x) + ax3 + bφ(x)2x) + φ(x)− cx2 − dx2φ(x)

= φ′(x)(cx3 + xψ(x) + ax3 + bφ(x)2x) + cx2 + ψ(x)− cx2 − cdx4 − dx2ψ(x)

= −cdx4 + ψ(x) +O(x6)

Therefore letting φ(x) = cdx4 + cx2, we have (Mφ)(x) = O(x6), resulting in the center

manifold h(x) = cx2 + cdx4 +O(x6).

It should be reiterated that a system does not admit a unique center manifold. Both

h1(x) and h2(x) can be center manifolds for the same system of differential equations.

In this case the difference h1(x) − h2(x) = O(|x|q) as x → 0 for any q > 1. Additional

properties of center manifolds can be found in Carr ([Ca] p. 28).

6. Lie Symmetries acting on Center Manifolds

Some work has been done in recent years linking the ideas of Lie symmetries and dy-

namical systems theory. We have already discussed that Lie symmetries leave invariant

the space of solutions curves and sometimes particular solution curves within the space.

We would like to find other spaces that are left invariant by the action of the symmetries.

The spaces that we are interested in are those arising in dynamical systems theory, in

particular, the stable, unstable and center manifolds as discussed above. The following

results with proof are found in a 1994 paper of Cicogna and Gaeta, [CG].

Proposition 6.1. (Proposition 2.4 of [CG]) All Lie point symmetries leave invariant

both the stable and unstable manifolds of the dynamical system. Also, Lie point symme-

tries transform any center manifold into a center manifold (possibly the same).

Proposition 6.2. (Proposition 7.1 of [CG]) Given any center manifold of a dynamical

system, there is, generically, some nontrivial Lie point symmetry leaving invariant this

center manifold, and conversely any Lie point symmetry of the dynamical system leaves

invariant some center manifold.

To determine if a Lie symmetry leaves invariant a center manifold, it is necessary

to have a characterization analogous to that for invariant solutions above. Recall that

if Q(x, y, y′) = η − y′ξ = 0, y′ is a solution invariant under the symmetry given by

X = ξ∂x + η∂y. Here using the notation of [CG] we let u ≡ (x, y) ∈ Rn where x ∈ Rk

span the eigenspace, and y ∈ Rn−k the orthogonal subspace. In this case, we have

a center manifold y = h(x) described by (n − k) equations. A Lie symmetry of the
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original system of differential equations is given by X = φ(x, y)∂x + ψ(x, y)∂y. We have

the following result.

Proposition 6.3. [CG] Proposition 3.1 The center manifold y = h(x) remains invariant

under the Lie symmetry X = φ(x, y)∂x + ψ(x, y)∂y if and only if

ψ(x, h(x)) = (∂xh(x)) · φ(x, h(x)).

Example 6.4. [CG] (7.6) Consider the dynamical system given by

ẋ1 = −x1r
2

ẋ2 = −x2r
2

ẏ = −y

where r2 = x2
1 + x2

2. One Lie symmetry of this system is given by the generator X =

x2∂x1 − x1∂x2. We will show that the center manifold y = h(x) = F
(

x2

x1

)
e
−1

2r2 , where

F is a constant, is invariant under this symmetry according to Proposition 6.3. In this

example, ψ(x, h(x)) = 0, so we must show that (∂xh(x)) · φ (x, h(x)) = 0.

(∂xh(x)) · φ (x, h(x)) =

〈
−x1

r4
e
−1

2r2 ,
−x2

r4
e
−1

2r2

〉
· 〈x2,−x1〉 = 0

Thus the Lie symmetry given by X maps this center manifold to itself.

7. Future Work

We have made progress in the understanding of the fundamental concepts of Lie

symmetries and how they behave on differential equations. The next step is to continue

to pursue the link between Lie symmetries and center manifolds. Lie symmetries and

center manifolds each provide a way to reduce a given system to one of lesser dimension,

possibly giving a more easily studied and solved equivalent system. We hope to consider

both symmetries and center manifolds of systems arising in the work of scientists at the

Natick Soldier Center. In most cases, the researchers have used numerical methods to

solve these systems and we would like to compare their solutions to ones found through

the use of symmetries and center manifolds. Additionally, we hope to be able to more

fully discuss the behavior of the systems through our studies.

The first system to be considered is a quasi-chemical kinetics model used to study

the growth and death of Staphylococcus aureus in bread [RTDFK]. Scientists at the

Natick Soldier Center use this system to predict appropriate shelf-life for sandwiches,

in particular considering the growth of bacteria in the region of the bread meeting the

filling. The system consists of four ODEs which describe the concentration of lag phase

cells (M), growth phase cells (M∗), antagonist (A), and dead cells (D). The nonnegative

constants k1 through k4 are the concentrations and rate constants. The constant G is
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the net natural growth rate and is defined as G = k2 − k4. At t = 0, we have the

following initial conditions: M = I, where I ≈ 103 − 104 and M∗ = A = D = 0. The

system follows.

Ṁ = −k1M

Ṁ∗ = k1M +M∗(G− εA)

Ȧ = M∗(k2 − εA)

Ḋ = M∗(k4 + εA)

We can see that this system satisfies the necessary conditions to have a center manifold

if we rewrite separating the linear and nonlinear terms as follows:
Ṁ

Ṁ∗

Ȧ

Ḋ

 =


−k1 0 0 0

k1 G 0 0

0 k2 0 0

0 k4 0 0




M

M∗

A

D

+


0

−εM∗A

−εM∗A

εM∗A

 .

The eigenvalues of the linearized system are −k1, G, 0 and 0. Since k1 is nonnegative,

there is at least a dimension one stable manifold. Additionally, having zero-valued

eigenvalues and the fact that the nonlinear part of the system of differential equations is

zero and has zero derivative matrix at zero, guarantees the existence of a center manifold.

The calculation of a center manifold in this case is more tedious than the examples

included in this paper. In future work we will find a center manifold and then also the

Lie symmetries of the system in order to investigate the behavior of the system.
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