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1 Executive Summary

Ballistic shock, the strong vibrations that propagate through a vehicle structure after a
ballistic impact, can damage el ectronic components that are mounted on various interior
locations of the vehicle. To protect onboard critical electronic components from ballistic
shock damage, predicted shock response spectra (SRS) are used as design guidelinesin
the selection of shock isolation devices. Current technology to predict shock response
intensity at component mounting locations includes Finite Element Anaysis, Statistical
Energy Analysis, and various other modeling approaches. The Army Research
Laboratory isimplementing a process to determine component damage probability based
on anumerical modal superposition method. This process allows detailed modeling of an
entire vehicle (including instrumentation racks) but requires months of effort to perform
skillful FEA modeling. Such an expenditure is acceptable only for selected high-vaue
vehicles, and isimpractical for analysis of many vehicles. Thereforeit is desirable to
investigate alternative shock analysis methods that are simple and general (i.e.,
independent of specific vehicle configurations). Although such methods could entail
reduced accuracy, for some situations they would eliminate the need for time-consuming
finite element modeling, and could provide analyses useful withavariety of vehicles. As
such, the methods could be used in “screening” for rapid identification of potential shock-
damageissues. If necessary, further detailed analysis could be accomplished
subsequently.



When an armored vehicleis subjected to a non-perforating large-caliber munitions
impact or blast, direct-mounted components that are near the impact location will always
risk the highest damage potential. Live-fire balistic tests and laboratory experiments
have proved this observation, as has numerical modeling. The research presented in this
paper devel ops, from an exact continuous model, a constant- and lumped-parameter
linear matrix model of a homogeneous, rectangular, simply-supported plate subject to
transverse ballistic shock. The model is provided in aform suitable for eigen-analysis
intended to yield kinematic responses for SRS determination. Damping can be included
in either Rayleigh or moda form. The enabled “same-plate” shock analysis, while not
encompassing an entire military vehicle, would treat the most severe cases of shock
response, for components mounted directly on the impacted plate.

2 Introduction

Military equipment must be designed to operate under a variety of hostile
environmental conditions. Mechanica shocks, from blast loads or projectile impacts to
military platforms, often place debilitating demands on critical eectronic and other
military subsystems. These failures can in turn disable the supported military platforms
even when the impacts themselves are humanly survivable.

Various types of shock response spectra (SRSs) [1, 2] are commonly used as
anaytical tools for the design and analysis of military hardware that will likely be subject
to remote impulsive shock loading. The remote impulse isfiltered through the
eigenstructure of the supported military platform to the attachment point of the
supporting subsystem, which isin turn excited viaits composite modes. A single point
on a SRS curve graphically represents the maximum time-response of a hypothetical
single-degree-of -freedom (SDOF) mass-spring-damping (MSD) system, assumed to be
attached in some desired direction at a contemplated or actual subsystem attachment
point. A complete SRS comprises a curve of the selected maximum response (typically
absolute acceleration, relative position, or pseudovelocity [3, 4]) plotted as a function of
SDOF-system frequency, for asingle damping ratio. Figure 1 represents a shock-loaded
system Swith aremote impact at point C and an attached SDOF system at point D. A
single point (w,, S,) of an undamped pseudovel ocity shock response spectrum (PSRS),
for example, would represent the maximum relative position x —d of mass m, over time,

multiplied by undamped natural frequency +k/ m, plotted versus that frequency:

Sylen):=andt)-dlt)] - (1)
For definitions of other common types of SRS, refer to [4].

The approach employed by most analysts, for determining the respective responses at
aset of r attachment points D; to aninput at C, isto use direct integration viaafinite

element analysis model. For each impact point of interest on supported system S, the
integration process must be repeated. Thisisavery time-consuming process. For a
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typical Stryker-vehicle analysis using, say, 1E5 shell elements and 1500 impact points,
this approach takes about two days per impact for a set of attachment points. Although it
istoo slow for many impacts, the method can be used for comparison in afew cases.

If the region of plastic deformation due to the impact is small, so that modal
superposition can be used, the processis significantly faster. For a Stryker vehicle
analysis using 1E5 shell elements and 500 modes, the modal analysistimeis about 72
hours. The subsequent transient analysis time for a set of attachment points then takes
about 10 minutes, for each impact location. Though much faster than the direct
integration approach, with 1500 impact points the transient analysistimeis still about 10
days. Then the response of the attached SDOF system must be evaluated numerically via
aconvolution integral (or some approximation of one) for each desired combination of
impulse shape, impact |ocation, attachment point, attached-system damping ratio, and
attached-system natural frequency. The results from either approach are typically
compiled in a huge database for use in subsystem design and analysis. Due to the
immense computational overhead required with either of the above processes, methods
are being sought which can speed up SRS development for a supported military platform.

As noted above, modal analysis offers the faster of the two routes to attachment-point
transient response, provided the system model can be assumed to belinear (asis
frequently realistic for point impacts). If the remote shock input (e.g., a C, Fig. 1) can be
idealized as a Dirac-delta function, then for Rayleigh or modal damping with symmetric
mass and stiffness matrices the attachment-point transient response (e.g., at point D, Fig.
1) can be determined analytically from the basic platform’s modal structure [5, 6]. In
these cases, the system response is found using 2™order linear matrix differential
equations. For more general damping or with an asymmetric mass or stiffness matrix a
1%-order linear matrix differential equation (i.e., state-space form) can be used [7]. In
any of the above cases the response will be alinear combination of exponentially
decaying sinusoids of known parameters. With Rayleigh damping the response has also



been determined analytically for other idealizations of the remote input—such as a
rectangular pulse or a sawtooth pulse [6]. The existence of an anaytical solution, asin
any of the foregoing cases, means that the appropriate structure (modal or eigen-) of the
basic platform need be determined only once, irrespective of the number of impacts or
attachment points. Thisin turn offers an enormous savings in modeling and
computational time and effort.

Further, from these analytical solutions the SDOF system’s kinematic response can
also be determined analytically [5, 6, 7]. Consequently, each convolution integral that
would otherwise be required to determine an SRS (i.e., for each undamped natural
frequency and damping ratio, at each attachment point), can be replaced with an algebraic
equation. The computational savingsis not significant for any single data point on an
individual SRS plot; but since the number of convolutions that must be performed to
develop the platform’s data base can be severa hundred thousand, the additional
computational savings can be quite substantial. Additionally, use of agebraic kinematic
responses, for attachment point and for SDOF-system mass, means that SRS data points
can be determined exactly for arbitrarily low frequencies. Thiswould not be possible if
nonal gebraic means were used for evaluating the convolution integral s[3].

The above paragraphs address the computational savings from impact idealization,
system linearization, modal - or eigen-decomposition, and a priori (algebraic)
convolution. It isaso possible, with some platforms, to represent an impacted surface by
aplate with idealized geometry, material properties, and boundary conditions. For many
such cases exact continuous solutions, or continuous sol ution-approximations or bounds,
existin the literature [8, 9, 10]. The simplest case for which an exact solution existsisa
homogeneous, undamped rectangular plate, simply supported on al edges, and subjected
to atransverse external force density. The present paper develops, from this continuous
solution, alinear, constant-parameter, lumped-parameter, dynamical model of a
homogeneous, simply-supported rectangular plate, to include either Rayleigh or modal
damping. The dynamical equations are given in a 2"-order matrix form conducive to
using the analytical idealizations and simplifications offered above for the 1%-order
matrix form.

3 Problem Statement

Consider aflat, linear, homogenous rectangular plate (Fig. 2) of length a (x-
direction), width b ('y -direction), uniform thickness h, Young' s modulus E, Poisson’s

ratio v, and mass density p per unit area; simply supported on al four edges; and subject
to transverse externa force intensity (i.e., per unit area of plate surface),

q=q(x y). @)

The x and y axes lie in the undeformed neutral plane.
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Figure 2. Simply-supported plate
to be discretized

The partia differential equation for the plate is well-known (e.g., [9, p. 257]):
pW, +DV*w=q(x,y); ©)
where w=wX y,t) (4)

is the transverse (z-direction) displacement of the neutral surface,

the flexural rigidity D is defined by

3
D= L (5)
12 (1—v2)
the subscript notation indicates partial differentiation:
o%w

= —’ 6
\Mt atz ( )
and v4.=viy? (7)



is the biharmonic differential operator (the dual application of the Laplacian operator
v2). For rectangular coordinates the Laplacian is expressed by

2 2
veo O, O ®)
oxX= oy
The simply supported boundary conditions [9] are represented by
W =W, +vw,, =0. 9

An analytical, modal solution to the homogeneous form of the differential equationis
also well known, for this plate geometry and set of boundary conditions. In particular,

w(x,y,0)= 3 S W (% )70 (), (10)

m=1n=1

where undamped natural frequency mnis

2 2
o= 383

the associated modeshapeis

Wiy = By sin(mz XJsin(m; y), (12)

and the corresponding undamped modal coordinateis
N :Sin(a)mnt+¢mn)' (13)
Constants B,,,, and ¢,,,, depend on theinitia conditions.

If the undamped natural frequencies are arranged in increasing order, then indicesmn
can be replaced with a single index k, and (10) through (13) can be rewritten as follows:

w(x, y, t) = > W, (x, y)n, (t) (14)

k=1

o0

where the k™ undamped natural frequency is



)

the associated modeshapeis

W, = By sin(mz XJsin(m;—y] =B, sin(%jsin[y\/wk\/g—(m?ﬂj} (16)

and the corresponding undamped modal coordinate is

un :Sin(a’kt+¢k ) (17)

The goals of the present paper are as follows:

(a) to usethe plate s partia differential equation (3) and its solution (14) through (17)
to develop alumped-parameter differential equation for the plate in a useful
linearized matrix form,

(b) to usethe matrix differential equation of motion to determine anaytically the
response of the plate at arbitrary point (x i Y ) to an impulsive shock input at a

different arbitrary point (x., y; ); and

(c) to use the response sol ution at (x i Y ) to determine analytically the kinematic
quantities needed for SRS computation at (x Y ) under the assumption of various
types of idealized impulsive loading at (%, ,y; ).

4 Solution

4.1 Matrix differential equation of motion

In terms of differential mass elements
dm=pdA, (18)
(3) can be re-expressed, still for the continuous system, as
(pdA)w, +(DAA)V *w = g(x, y)dA. (19)

To express the mathematical model in finite-dimensional form, first discretize the plate
into r elements of respective areas A (i :1,...,r), with the mass



m =pA (20)

of the i " element located in the element on the neutral surface, at some point P having
coordinates (xi Y ) (Refer to Fig. 2.) Thefidelity of the discretized representation can
be expected to vary, of course, depending on the choices both of the value of r and of the
locations of points P; areasonable location for P would be at the centroid of the i™

mass element. Lump the transverse loading on the i™ element into concentrated force

fi (t)= [ alx y)dA, (21)
A

applied a P. Thenfor the i " element (19) becomes
m; V\4t|()q,yl)+(DAi)V4WI(XM) =fi. (22)

In vector form, using transparent notation for the vector elements,

{ml MWll+DJA1V54WlLinlL (23)

M W DAV *w

A ]
where A= { ‘ (24)
A
and M =pA. (25)

Application of the biharmonic operator to (14) leads directly to

v4w=v4[ivvk<x, y>nk<t>}=g{v4w<x,y>1nk<t>}. )

k=1

Expanding V * in terms of rectangular coordinates via (8), applying it to (26), and
approximating the modal sum by thefirst r terms, one obtains



Viw= %Za)f\/\& (x, y)nk(t),
k=1

where each continuous modeshape W, is defined by (16) (repeated below):

W, (x y) =B, gn(mzx]gr{nzy]’
Wyl )= B(m”y Jw@—% }

The modeshapes can be discretized into vector form:

or, equivalently,

[t
=
Il

which can be normalized using the Euclidean norm:

me=.
Jug

1=

Define r x p modeshape matrix

o]

and use it to define anormalized modal coordinate vector n as follows:

C

Il
IER
3

w=Un.

(27)

(29)

(29)

(30)

(31)

(32)

(33)

It should be noted here that the number p of modes comprising U can never exceed half
the number r of mass el ements—and in many cases p must be considerably smaller—in
order to avoid aliasing effects. In particular, for arectangular plate comprising r equa
rectangular elements of dimensions Axx Ay, discretized modeshape u, cannot represent

continuous modeshape U, without aliasing unless

Ax<alm

(34)



and Ay<b/n (35)
for the particular values of mand n correspondingto U, .

Now, using (33), (25), and (27), the discretized equation of motion (23) can be
expressed in terms of modal coordinates by

MU7+MUQ?n=f, (36)

[, 1
for Q= : (37

In terms of physical coordinates, and using U * to represent the pseudoinverse of U,

MW+ Kw= f, (38)
where K=MUQ?U". (39)

The pseudoinverse U * was required abovein lieu of the normal inverse, since U is not
square.

It should be noted here, for subsequent use, that athough mass matrix M is
symmetric—and diagonal (23)—stiffness matrix K is not necessarily even symmetric, as
one can show readily by using r =2 and solving for K algebraically. Further, the
discretized modeshape matrix U is not necessarily unitary.

One can now insert modal damping into (36). First premultiply each term of (36) by
(MU)" to obtain

7+Q%n =(MU)” f (40)

Define amoda damping matrix by

26,0,
Cy = - . (41)

26,0,

Then from (40) the damped equations are

10



fi+Cy1i+Q%n =(MU)" f

(42)

Note that these equations are decoupled. Interms of physical coordinates, via (33), (42)
reduces to

MW+Cw+ Kw= f , (43)

where C =MUC,U", (44)

and K is as defined previously, by (39).

Alternatively, with Rayleigh damping, (36) becomes
MW+CRW+Kw:i, (45)
where Cr=0M+BK, (46)
for somedesired «, . Interms of modal coordinates, (45) is

MU7j +CgU7j + MUQ?n = f (47)

or ii+(MU) Cru1i +Q%n=(MU)" f

(48)

This reducesin turn to the decoupled set of equations

7+ +Q%n =(MU)" £, (49)
where, using r x r identity matrix I,
a+ fol
IF=al +Q%= . (50)

a+ B o’

11



Alternatively expressed,

2, o
F=al +BQ%= : (51)
e
a +ﬁco-2
where G =———". (52)
ZCOi

Observe that since K is not symmetric, and since U is not unitary, the usual unitary
similarity transformation U ( )U has not been (cannot be) used to diagonalize the

damping or stiffness matrix in either (43) or (45). However, (42) and (49) still represent
the respective modal equations in decoupled form.

4.2 Response w(xj VY ,t) to shock input f (xi Y ,t)

Using Laplace transforms, and assuming all modes to be underdamped, the i"™ modal
solution to either (42) or (49) is

ni(t) = €9 (A cosm, t+B singy th i_(e‘g' hit g nwdit)* £, (53)
where A =ni( *), (54)
B =%n( )+ én( ), (55)

and f; isthe i element of (MU )" f

12



In matrix form, the modal coordinate vector is

gt comoﬂt+(—g£1°1)si nwdlt]

e Pt [cos%pn(gpw"p)s ncodpt}

(ﬁ)e‘gl“mt Singyt
+ B 7 (0+)

(jz)eﬂ‘”m‘ Sinogt

+ MU f(t) t.  (56)

— t .
[J—)e PR S t
@dp p

Accordingly, upon applying (33), the physical coordinate vector is

_eﬂ“hf cosat +( )9 ncodlt] |
\Lv(t):U U+\Lv(0+)

e Pt [coswdpt + [ pw“"js na)dpt}

_(;L Gt S Nt ]

0:1}

. AUl 6D
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Suppose that the only nonzero element of f isashock input

= f(x,y.1), (58)

applied to point B. Let the (i,j) elementsof U and U™ berepresented by u;; and v; .
Then for zero initia conditions (57) reduces readily to

1 aont gyt ivi £ 1)
Dy1 i=1 m

=[m...m,) : , (59)

1 ﬁgpahp[ . ! Vpi
—e Sinayt* Y —f(t
i Wap ;m |()

from which the displacement response W, (at point P;) totheforceinput f; (at B)is

u]kvkl

p . .
_f t) * Z[ J e ging, t (60)
m g\ P

If the shock input can be idealized as a Dirac delta of strength y, the responseis smply
the sum of p exponentially decaying sinusoids:

7N kak' S keonid
Wj( =—— €K1k Sinag,t (61)
mia

as expected. Adding to (61) the effects of initial conditions, from (57), is straightforward,
and not included here.

For certain other deterministic inputs f; (e.g., rectangular, sawtooth, haversine, or

versed-sine impulses) the terms of (60) can aso be evaluated as algebraic expressions,
upon performing the convolution integrations analytically (rather than numericaly).
Reference [6] shows the procedure for ideal-impulse (Dirac-delta), rectangul ar-pulse, and
sawtooth-pulse inputs, in the related case of symmetric mass and stiffness matrices with
Rayleigh damping. For the case of more general damping, and with asymmetric mass
and/or stiffness matrices (as here), [7] provides a general procedure using a state-space
approach; and achieves an algebraic solution for a Dirac-delta shock input.

14



4.3 Deter mination of shock r esponse pectra for selected deter ministic inputs

For a Dirac-delta shock input, and with Rayleigh or moda damping, the linearized
system response has been shown to be a sum of easily determined, exponentially
decaying sinusoids available in algebraic form (61). For rectangul ar-pulse and sawtooth
inputs, the response would aso include step and ramp components, and some time delays
[6]. From these the remaining kinematic quantities behind common forms of shock
response spectra could be found analytically as well, without requiring further
convolution. See[5, 6, 7] for details.

5 Verification and Matlab Implementation

Verification of the above analytical model isin progress; the verification procedure
follows, with some preliminary results. For purpose of comparison, two models have
been implemented of an isotropic, homogeneous, aluminum test-plate: an analytical
model, in Matlab; and alinear finite-element (FEA) model, in ANSYS. The plate
material is 6061-T6 aluminum, with Y oung’s modulus 69 GPa, mass density 2700 kg/m?®,

Impacted Aluminum Plate Descriptions
Boundary conditions: simply supported on all sides

Thickness: 25 mm
response point 3, node 1839 ma Damping: 0.02

i Material: al 6061-T6
response point 2, node 1%9 E: 6969
L3

Mass Density: 2700 kg/m”3

= Poisson’s ratio: 0.33
[Te)
- ™~
response pint 1, node 629 o
]
Node Coordinates (m)
Node X Y
(]
Impact point, node 328 328 0.1 0.0789
) 629 0.26 0.178
e — 1379 0.66 0.375

1.0m 1839 0.9 0.691

Figure 3. Test plate, showing impact- and response points

Poisson’ s ratio 0.33, and modal damping ratio 0.02 (all modes). (See Fig. 3.) The plate
is simply supported along each of its four edges, with dimensions 1.0 mx 0.75 m x 25
mm. Both models comprise uniform rectangular (parallelepiped) elements: 50 el ement
divisions along the length (x-direction, measured in the neutral plane from the lower left
corner), and 38 along the width (y-direction, measured correspondingly). Impulses of
identical strength (50 N-s) were applied at corresponding impact points, and the
responses were determined at three sets of corresponding response points, from zero

15



initial conditions. For the plots that follow the (X, y) coordinates of the impact and
response points were (0.1, 0.0789) m and (0.66, 0.375) m, respectively. A single10-us
symmetric sawtooth pulse (Fig. 4) was used for the finite-element model; the anal ytical
model assumed an ideal (Dirac-delta) impulse. Twenty modes were used to determine
the response of each model.

Force(Newton

0 2.1 0.2 03 0.4 05 06 0.7 2.8 0.9 1
x10”

Max Impulse: 50

Impulse(N S)

0 2.1 0.2 0.3 0.4 0.5 0.6 0.7 2.8 0.9 1
Time(second) -5

Figure 4. Loading function for FEA model

Figure 5 provides a side-by-side comparison of the 20 lowest modal frequencies
(rad/s) from the respective models. In no case did the analytical frequency differ from
the FEA frequency by more than 0.25 %. Figures 6 and 7 offer representative modeshape
comparisons; and Figure 8 plots response-point displacements from the two models at
Node 1379 (refer to Fig. 3). The associated accel eration plots are shown in Figure 9.
Corresponding modal frequencies, modeshapes, displacements, and accelerations all
match well between the two models.

16



EEA — Ansys Analytical Difference (%)
168.6 168.6 0.015
350.6 350.7 0.030
492.2 492.4 0.027
654.0 654.3 0.041
674.1 674.5 0.061
977.1 978.0 0.093
1031.6 1032.0 0.042
1078.7 1079.3 0.052
1213.1 1214.2 0.085
1401.4 1403.0 0.119
1515.6 1517.7 0.137
1624.6 1625.6 0.065
1786.4 1787.5 0.061
1939.1 1942.7 0.185
1946.6 1949.4 0.142
1967.5 1969.6 0.108
2269.3 2273.2 0.173
2291.6 2293.4 0.079
2483.4 2489.0 0.228
2612.9 2617.2 0.163

Figure 5. Comparison of modal frequencies: 1% 20 modes

Mode shape comparison
(6" mode, m=3,n =2)

FEA - ANSYS Analytical - Matlab
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Figure 6. Modeshape comparison, 6" mode
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Mode shape comparison
(19" mode, m =5, n=3)

FEA - ANSYS Analytical - Matlab
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Figure 7. Modeshape comparison, 19" mode

x 10 Displacement Response (at FEA Node 1379)

Displacement (m)

Figure 8. Response-point displacement comparison, node 1379,
for an equal no. of elements (1900) and of modal components (20)
in both models. Damping ratio: 0.02 for all modes.
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x 10 Acceleration Response (at FEA Node 1379)
T T T T

T
FEA
Analytical

Acceleration (m/s”2)

Time (s) X107

Figure 9. Response-point acceleration comparison, node 1379,
for an equal no. of elements (1900) and of modal components (20)
in both models. Damping ratio: 0.02 for all modes.

6 Concluson

This paper has documented the development of a discretized (lumped-parameter)
anaytical model, in the formof alinear matrix differential equation of motion, for a
simply supported rectangular plate subject to arbitrary transverse ballistic shock loading.
Although the model was derived from a continuous (and exact) analytical model of an
undamped plate, it was augmented to include either Rayleigh or moda damping. The
augmented equations were then solved ana ytically for the case of an ideal-impulse,
transverse point-shock load. A Matlab implementation was benchmarked against a linear
FEA model, with comparisons made using the first 20 modes. The frequencies,
modeshapes, and displacement and accel eration responses all match well.

The model is provided in aform suitable for using a one-time eigen-anaysisof a
system to yield system kinematic responsesthat are useful, in turn, for various SRS
determinations—that is, given an arbitrary impact-point/response-point pair. The
enabled “same-plate” shock analysis, while not encompassing an entire military vehicle,
would treat the most severe cases of shock response, for components mounted directly on
the impacted plate.
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