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1 Executive Summary

Ballistic shock, the strong vibrations that propagate through a vehicle structure after a
ballistic impact, can damage electronic components that are mounted on various interior
locations of the vehicle. To protect onboard critical electronic components from ballistic
shock damage, predicted shock response spectra (SRS) are used as design guidelines in
the selection of shock isolation devices. Current technology to predict shock response
intensity at component mounting locations includes Finite Element Analysis, Statistical
Energy Analysis, and various other modeling approaches. The Army Research
Laboratory is implementing a process to determine component damage probability based
on a numerical modal superposition method. This process allows detailed modeling of an
entire vehicle (including instrumentation racks) but requires months of effort to perform
skillful FEA modeling. Such an expenditure is acceptable only for selected high-value
vehicles, and is impractical for analysis of many vehicles. Therefore it is desirable to
investigate alternative shock analysis methods that are simple and general (i.e.,
independent of specific vehicle configurations). Although such methods could entail
reduced accuracy, for some situations they would eliminate the need for time-consuming
finite element modeling, and could provide analyses useful with a variety of vehicles. As
such, the methods could be used in “screening” for rapid identification of potential shock-
damage issues. If necessary, further detailed analysis could be accomplished
subsequently.
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When an armored vehicle is subjected to a non-perforating large-caliber munitions
impact or blast, direct-mounted components that are near the impact location will always
risk the highest damage potential. Live-fire ballistic tests and laboratory experiments
have proved this observation, as has numerical modeling. The research presented in this
paper develops, from an exact continuous model, a constant- and lumped-parameter
linear matrix model of a homogeneous, rectangular, simply-supported plate subject to
transverse ballistic shock. The model is provided in a form suitable for eigen-analysis
intended to yield kinematic responses for SRS determination. Damping can be included
in either Rayleigh or modal form. The enabled “same-plate” shock analysis, while not
encompassing an entire military vehicle, would treat the most severe cases of shock
response, for components mounted directly on the impacted plate.

2 Introduction

Military equipment must be designed to operate under a variety of hostile
environmental conditions. Mechanical shocks, from blast loads or projectile impacts to
military platforms, often place debilitating demands on critical electronic and other
military subsystems. These failures can in turn disable the supported military platforms
even when the impacts themselves are humanly survivable.

Various types of shock response spectra (SRSs) [1, 2] are commonly used as
analytical tools for the design and analysis of military hardware that will likely be subject
to remote impulsive shock loading. The remote impulse is filtered through the
eigenstructure of the supported military platform to the attachment point of the
supporting subsystem, which is in turn excited via its composite modes. A single point
on a SRS curve graphically represents the maximum time-response of a hypothetical
single-degree-of-freedom (SDOF) mass-spring-damping (MSD) system, assumed to be
attached in some desired direction at a contemplated or actual subsystem attachment
point. A complete SRS comprises a curve of the selected maximum response (typically
absolute acceleration, relative position, or pseudovelocity [3, 4]) plotted as a function of
SDOF-system frequency, for a single damping ratio. Figure 1 represents a shock-loaded
system S with a remote impact at point C and an attached SDOF system at point D. A
single point  Vn S, of an undamped pseudovelocity shock response spectrum (PSRS),
for example, would represent the maximum relative position dx  of mass m, over time,
multiplied by undamped natural frequency mk / , plotted versus that frequency:

   
max

: tdtxS nnV  . (1)

For definitions of other common types of SRS, refer to [4].

The approach employed by most analysts, for determining the respective responses at
a set of r attachment points iD to an input at C, is to use direct integration via a finite
element analysis model. For each impact point of interest on supported system S, the
integration process must be repeated. This is a very time-consuming process. For a
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Figure 1. Shock-loaded system S,
with (hypothetical) attached MSD system

for SRS determination

typical Stryker-vehicle analysis using, say, 1E5 shell elements and 1500 impact points,
this approach takes about two days per impact for a set of attachment points. Although it
is too slow for many impacts, the method can be used for comparison in a few cases.

If the region of plastic deformation due to the impact is small, so that modal
superposition can be used, the process is significantly faster. For a Stryker vehicle
analysis using 1E5 shell elements and 500 modes, the modal analysis time is about 72
hours. The subsequent transient analysis time for a set of attachment points then takes
about 10 minutes, for each impact location. Though much faster than the direct
integration approach, with 1500 impact points the transient analysis time is still about 10
days. Then the response of the attached SDOF system must be evaluated numerically via
a convolution integral (or some approximation of one) for each desired combination of
impulse shape, impact location, attachment point, attached-system damping ratio, and
attached-system natural frequency. The results from either approach are typically
compiled in a huge database for use in subsystem design and analysis. Due to the
immense computational overhead required with either of the above processes, methods
are being sought which can speed up SRS development for a supported military platform.

As noted above, modal analysis offers the faster of the two routes to attachment-point
transient response, provided the system model can be assumed to be linear (as is
frequently realistic for point impacts). If the remote shock input (e.g., at C, Fig. 1) can be
idealized as a Dirac-delta function, then for Rayleigh or modal damping with symmetric
mass and stiffness matrices the attachment-point transient response (e.g., at point D, Fig.
1) can be determined analytically from the basic platform’s modal structure [5, 6]. In
these cases, the system response is found using 2nd-order linear matrix differential
equations. For more general damping or with an asymmetric mass or stiffness matrix a
1st-order linear matrix differential equation (i.e., state-space form) can be used [7]. In
any of the above cases the response will be a linear combination of exponentially
decaying sinusoids of known parameters. With Rayleigh damping the response has also
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been determined analytically for other idealizations of the remote input—such as a
rectangular pulse or a sawtooth pulse [6]. The existence of an analytical solution, as in
any of the foregoing cases, means that the appropriate structure (modal or eigen-) of the
basic platform need be determined only once, irrespective of the number of impacts or
attachment points. This in turn offers an enormous savings in modeling and
computational time and effort.

Further, from these analytical solutions the SDOF system’s kinematic response can
also be determined analytically [5, 6, 7]. Consequently, each convolution integral that
would otherwise be required to determine an SRS (i.e., for each undamped natural
frequency and damping ratio, at each attachment point), can be replaced with an algebraic
equation. The computational savings is not significant for any single data point on an
individual SRS plot; but since the number of convolutions that must be performed to
develop the platform’s data base can be several hundred thousand, the additional
computational savings can be quite substantial. Additionally, use of algebraic kinematic
responses, for attachment point and for SDOF-system mass, means that SRS data points
can be determined exactly for arbitrarily low frequencies. This would not be possible if
nonalgebraic means were used for evaluating the convolution integrals [3].

The above paragraphs address the computational savings from impact idealization,
system linearization, modal- or eigen-decomposition, and a priori (algebraic)
convolution. It is also possible, with some platforms, to represent an impacted surface by
a plate with idealized geometry, material properties, and boundary conditions. For many
such cases exact continuous solutions, or continuous solution-approximations or bounds,
exist in the literature [8, 9, 10]. The simplest case for which an exact solution exists is a
homogeneous, undamped rectangular plate, simply supported on all edges, and subjected
to a transverse external force density. The present paper develops, from this continuous
solution, a linear, constant-parameter, lumped-parameter, dynamical model of a
homogeneous, simply-supported rectangular plate, to include either Rayleigh or modal
damping. The dynamical equations are given in a 2nd-order matrix form conducive to
using the analytical idealizations and simplifications offered above for the 1st-order
matrix form.

3 Problem Statement

Consider a flat, linear, homogenous rectangular plate (Fig. 2) of length a ( x -
direction), width b ( y -direction), uniform thickness h , Young’s modulus E, Poisson’s
ratioν, and mass density per unit area; simply supported on all four edges; and subject
to transverse external force intensity (i.e., per unit area of plate surface),

 yxqq , . (2)

The x and y axes lie in the undeformed neutral plane.
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Figure 2. Simply-supported plate
to be discretized

The partial differential equation for the plate is well-known (e.g., [9, p. 257]):

 yxqwDwtt ,4  ; (3)

where  tyxww ,, (4)

is the transverse (z-direction) displacement of the neutral surface,

the flexural rigidity D is defined by

 2

3

112 


Eh
D , (5)

the subscript notation indicates partial differentiation:

2

2

:
t

w
wtt 


 , (6)

and 224 :  (7)
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is the biharmonic differential operator (the dual application of the Laplacian operator
2 ). For rectangular coordinates the Laplacian is expressed by

2

2

2

2
2

yx 



 . (8)

The simply supported boundary conditions [9] are represented by

0 yyxx www  . (9)

An analytical, modal solution to the homogeneous form of the differential equation is
also well known, for this plate geometry and set of boundary conditions. In particular,

    









1 1

,,,
m n

mnmn tyxWtyxw  , (10)

where undamped natural frequency mn is



























22

2

b
n

a
mD

mn 


 , (11)

the associated modeshape is

,sinsin 













b
yn

a
xm

BW mnmn
 (12)

and the corresponding undamped modal coordinate is

 mnmnmn t  sin . (13)

Constants mnB and mn depend on the initial conditions.

If the undamped natural frequencies are arranged in increasing order, then indices mn
can be replaced with a single index k, and (10) through (13) can be rewritten as follows:

    





1

,,,
k

kk tyxWtyxw  (14)

where the thk undamped natural frequency is
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the associated modeshape is








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
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
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




(16)

and the corresponding undamped modal coordinate is

 kkk t  sin . (17)

The goals of the present paper are as follows:

(a) to use the plate’s partial differential equation (3) and its solution (14) through (17)
to develop a lumped-parameter differential equation for the plate in a useful
linearized matrix form;

(b) to use the matrix differential equation of motion to determine analytically the
response of the plate at arbitrary point  jj yx , to an impulsive shock input at a

different arbitrary point  ii yx , ; and
(c) to use the response solution at  jj yx , to determine analytically the kinematic

quantities needed for SRS computation at  jj yx , , under the assumption of various

types of idealized impulsive loading at  ii yx , .

4 Solution

4.1 Matrix differential equation of motion

In terms of differential mass elements

dAdm  , (18)

(3) can be re-expressed, still for the continuous system, as

     dAyxqwdADwdA tt ,4  . (19)

To express the mathematical model in finite-dimensional form, first discretize the plate
into r elements of respective areas  riAi ,...,1 , with the mass
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ii Am  (20)

of the thi element located in the element on the neutral surface, at some point iP having
coordinates  ii yx , . (Refer to Fig. 2.) The fidelity of the discretized representation can
be expected to vary, of course, depending on the choices both of the value of r and of the
locations of points iP ; a reasonable location for iP would be at the centroid of the thi

mass element. Lump the transverse loading on the thi element into concentrated force

   i
A

i dAyxqtf
i

 , , (21)

applied at iP . Then for the thi element (19) becomes

      iyxiyxtti fwADwm
iiii


,
4

,
. (22)

In vector form, using transparent notation for the vector elements,


f

f

f

wAD

wA

wA
D

w

w

w

M

m

m
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

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
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



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
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
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
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
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

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
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













  


1

4

4

1
4

111

, (23)

where


















rA

A

A 
1

(24)

and AM  . (25)

Application of the biharmonic operator to (14) leads directly to

       






















1

4

1

44 ,,
k

kk
k

kk tyxWtyxWw  . (26)

Expanding 4 in terms of rectangular coordinates via (8), applying it to (26), and
approximating the modal sum by the first r terms, one obtains
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  



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kkk tyxW
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24 , 
 , (27)

where each continuous modeshape kW is defined by (16) (repeated below):

  













b
yn

a
xm

ByxW kk


sinsin, , (28)

or, equivalently,

  





















a

m
D

y
a

xmByxW kkk
 sinsin, . (29)

The modeshapes can be discretized into vector form:
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























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
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
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k




sinsin

sinsin 11

 , (30)

which can be normalized using the Euclidean norm:

k

k
k u

u
m  . (31)

Define pr  modeshape matrix

 pmmU ,...,1 , (32)

and use it to define a normalized modal coordinate vector as follows:

Uw  . (33)

It should be noted here that the number p of modes comprising U can never exceed half
the number r of mass elements—and in many cases p must be considerably smaller—in
order to avoid aliasing effects. In particular, for a rectangular plate comprising r equal
rectangular elements of dimensions yx  , discretized modeshape ku cannot represent

continuous modeshape kU without aliasing unless

max / (34)



10

and nby / (35)

for the particular values of m and n corresponding to kU .

Now, using (33), (25), and (27), the discretized equation of motion (23) can be
expressed in terms of modal coordinates by

fMUMU   2 , (36)

for


















p




1

. (37)

In terms of physical coordinates, and using U to represent the pseudoinverse of U,

fwKwM  , (38)

where  UMUK 2 . (39)

The pseudoinverse U was required above in lieu of the normal inverse, since U is not
square.

It should be noted here, for subsequent use, that although mass matrix M is
symmetric—and diagonal (23)—stiffness matrix K is not necessarily even symmetric, as
one can show readily by using 2r and solving for K algebraically. Further, the
discretized modeshape matrix U is not necessarily unitary.

One can now insert modal damping into (36). First premultiply each term of (36) by
 MU to obtain

  fMU   2 . (40)

Define a modal damping matrix by



















pp

MC




2

2 11

 . (41)

Then from (40) the damped equations are
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  fMUCM
  2 . (42)

Note that these equations are decoupled. In terms of physical coordinates, via (33), (42)
reduces to

fwKwCwM   , (43)

where  UMUCC M , (44)

and K is as defined previously, by (39).

Alternatively, with Rayleigh damping, (36) becomes

fwKwCwM R   , (45)

where KMCR   , (46)

for some desired α, β. In terms of modal coordinates, (45) is

fMUUCMU R   2 , (47)

or     fMUUCMU R
   2 . (48)

This reduces in turn to the decoupled set of equations

  fMU   2 , (49)

where, using rr identity matrix I,






















2

2
1

2

p

I



  . (50)
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Alternatively expressed,



















pp

I






2

2 11
2  , (51)

where
i

i
i 




2

2
 . (52)

Observe that since K is not symmetric, and since U is not unitary, the usual unitary
similarity transformation UU * has not been (cannot be) used to diagonalize the
damping or stiffness matrix in either (43) or (45). However, (42) and (49) still represent
the respective modal equations in decoupled form.

4.2 Response  tyxw jj ,, to shock input  tyxf ii ,,

Using Laplace transforms, and assuming all modes to be underdamped, the thi modal
solution to either (42) or (49) is

     idi
t

di
diidii

t
i ftetBtAet niinii

~
sin

1
sincos   


  , (53)

where   0iiA  , (54)

     010 i
di

i
di

nii
iB 





  , (55)

and if
~ is the thi element of   fMU  .
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In matrix form, the modal coordinate vector is


  

 
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Accordingly, upon applying (33), the physical coordinate vector is
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Suppose that the only nonzero element of f is a shock input

 tyxff iii ,, , (58)

applied to point iP . Let the  ji, elements of U and U be represented by iju and ijv .
Then for zero initial conditions (57) reduces readily to

  















































r

i
i

i

pi
dp

t

dp

r

i
i

i

i
d

t

d

p

tf
m

v
te

tf
m
v

te

mmtw
npp

n

1

1

1
1

1

1

sin
1

sin1

,...,

11











 , (59)

from which the displacement response jw (at point jP ) to the force input if (at iP ) is
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If the shock input can be idealized as a Dirac delta of strength , the response is simply
the sum of p exponentially decaying sinusoids:
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, (61)

as expected. Adding to (61) the effects of initial conditions, from (57), is straightforward,
and not included here.

For certain other deterministic inputs if (e.g., rectangular, sawtooth, haversine, or
versed-sine impulses) the terms of (60) can also be evaluated as algebraic expressions,
upon performing the convolution integrations analytically (rather than numerically).
Reference [6] shows the procedure for ideal-impulse (Dirac-delta), rectangular-pulse, and
sawtooth-pulse inputs, in the related case of symmetric mass and stiffness matrices with
Rayleigh damping. For the case of more general damping, and with asymmetric mass
and/or stiffness matrices (as here), [7] provides a general procedure using a state-space
approach; and achieves an algebraic solution for a Dirac-delta shock input.
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Impact point, node 328

response point 1, node 629

response point 2, node 1379

response point 3, node 1839

1.0 m

0.
75

m

Node Coordinates (m)
Node x y

328 0.1 0.0789
629 0.26 0.178
1379 0.66 0.375
1839 0.9 0.691

Thickness: 25 mm
Damping: 0.02

Material: al 6061-T6
E: 69e9
Mass Density: 2700 kg/m^3
Poisson’s ratio: 0.33

Impacted Aluminum Plate Descriptions
Boundary conditions: simply supported on all sides

4.3 Determination of shock response spectra for selected deterministic inputs

For a Dirac-delta shock input, and with Rayleigh or modal damping, the linearized
system response has been shown to be a sum of easily determined, exponentially
decaying sinusoids available in algebraic form (61). For rectangular-pulse and sawtooth
inputs, the response would also include step and ramp components, and some time delays
[6]. From these the remaining kinematic quantities behind common forms of shock
response spectra could be found analytically as well, without requiring further
convolution. See [5, 6, 7] for details.

5 Verification and Matlab Implementation

Verification of the above analytical model is in progress; the verification procedure
follows, with some preliminary results. For purpose of comparison, two models have
been implemented of an isotropic, homogeneous, aluminum test-plate: an analytical
model, in Matlab; and a linear finite-element (FEA) model, in ANSYS. The plate
material is 6061-T6 aluminum, with Young’s modulus 69 GPa, mass density 2700 kg/m3,

Figure 3. Test plate, showing impact- and response points

Poisson’s ratio 0.33, and modal damping ratio 0.02 (all modes). (See Fig. 3.) The plate
is simply supported along each of its four edges, with dimensions 1.0 m x 0.75 m x 25
mm. Both models comprise uniform rectangular (parallelepiped) elements: 50 element
divisions along the length (x-direction, measured in the neutral plane from the lower left
corner), and 38 along the width (y-direction, measured correspondingly). Impulses of
identical strength (50 N-s) were applied at corresponding impact points, and the
responses were determined at three sets of corresponding response points, from zero
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initial conditions. For the plots that follow the (x, y) coordinates of the impact and
response points were (0.1, 0.0789) m and (0.66, 0.375) m, respectively. A single 10-μs
symmetric sawtooth pulse (Fig. 4) was used for the finite-element model; the analytical
model assumed an ideal (Dirac-delta) impulse. Twenty modes were used to determine
the response of each model.

Figure 4. Loading function for FEA model

Figure 5 provides a side-by-side comparison of the 20 lowest modal frequencies
(rad/s) from the respective models. In no case did the analytical frequency differ from
the FEA frequency by more than 0.25 %. Figures 6 and 7 offer representative modeshape
comparisons; and Figure 8 plots response-point displacements from the two models, at
Node 1379 (refer to Fig. 3). The associated acceleration plots are shown in Figure 9.
Corresponding modal frequencies, modeshapes, displacements, and accelerations all
match well between the two models.
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Figure 5. Comparison of modal frequencies: 1st 20 modes

Figure 6. Modeshape comparison, 6th mode

FEA – Ansys Analytical Difference (%)
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Figure 7. Modeshape comparison, 19th mode

Figure 8. Response-point displacement comparison, node 1379,
for an equal no. of elements (1900) and of modal components (20)
in both models. Damping ratio: 0.02 for all modes.
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Figure 9. Response-point acceleration comparison, node 1379,
for an equal no. of elements (1900) and of modal components (20)
in both models. Damping ratio: 0.02 for all modes.

6 Conclusion

This paper has documented the development of a discretized (lumped-parameter)
analytical model, in the form of a linear matrix differential equation of motion, for a
simply supported rectangular plate subject to arbitrary transverse ballistic shock loading.
Although the model was derived from a continuous (and exact) analytical model of an
undamped plate, it was augmented to include either Rayleigh or modal damping. The
augmented equations were then solved analytically for the case of an ideal-impulse,
transverse point-shock load. A Matlab implementation was benchmarked against a linear
FEA model, with comparisons made using the first 20 modes. The frequencies,
modeshapes, and displacement and acceleration responses all match well.

The model is provided in a form suitable for using a one-time eigen-analysis of a
system to yield system kinematic responses that are useful, in turn, for various SRS
determinations—that is, given an arbitrary impact-point/response-point pair. The
enabled “same-plate” shock analysis, while not encompassing an entire military vehicle,
would treat the most severe cases of shock response, for components mounted directly on
the impacted plate.
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