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1 Executive Summary

Algebraic expressions were recently reported for the time-domain response of abase-
excited mass-spring-damper (M SD) system to certain analytical inputs. These local,
seismic inputs were idealized as stemming from remote shock inputs filtered through an
arbitrary linear system’s eigenstructure, under the assumption of proportional (Rayleigh)
damping. Remote shock inputs of three forms were considered: (1) an idea impulse, (2)
arectangular pulse, and (3) a saw-tooth pulse. The MSD kinematic responses were used
to determine Shock Response Spectra (SRS) without necessitating numerical evaluation
of aconvolution integral. The present paper determines corresponding analytical
expressions for the case of a generally damped (not necessarily Rayleigh-damped) linear
system subject to aremote ideal impulse.

2 Introduction

Modern warfare calls for many military systems to be capable of sustained operation
under extreme environmental conditions. Designers of military equipment must typically
harden their hardware to maintain an acceptable degree of functionality when exposed to
mechanical shock, from such sources as blast-waves, collisions, and projectile impacts.
Frequently the military and its vendors define a design shock environment in terms of the
maximum kinematic response, over time, that it will produce in a hypothetica, single-
degree-of-freedom (SDOF) mass-spring-damper (MSD) system attached at the point of a
kinematic disturbance (see Fig. 1). The disturbanceistypically a direct impulsive
displacement or acceleration, not necessarily known. The response describes the
corresponding motion of the mass, usually in terms of its displacement (absolute or
relative), pseudo-velocity (relative displacement multiplied by the SDOFsystem
undamped natural frequency), or absolute acceleration. A quantified representation (e.g.,



by plot, equation, or table) of the maximum selected response, as a function of frequency,
is known as a shock response spectrum (SRS) [1,2,3,4]
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Figure 1. Hypothetical SDOF MSD system,
for SRS determination

For a SDOF MSD system disturbed by adirect input d(t) (at D, Fig. 2), comprising a
linear combination of v exponentially decaying sinusoids all beginning at time zero, the
displacement response x(t) has arelatively smple analytical form[5]. In particular, x(t)
comprises alinear combination of v +1 exponentially decaying, phase-shifted sinusoids,
at the forcing frequencies and at the damped natura frequency for the hypothetical SDOF
MSD system. Like the direct-input sinusoids, the response sinusoids all begin at time
zero. The input disturbance can be described as “local” (sinceit is applied locdly, at D),
and can be regarded as afiltered, or induced, input due to aremote shock (e.g., a R, Fig.
2). It has been shown [6,7] that, for a linear, constant-parameter, Rayleigh-damped
system having v degrees of freedom (vDOFs), the local input d(t) will have thissimple

form, provided the remote shock input is an ideal impulse (i.e., a Dirac-delta function).
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Figure 2. Shock-loaded system S,
with (hypothetical) attached MSD system
for SRS determination



Accordingly, the rel ative-displacement response of the MSD system has asimple
anaytical form, consisting of alinear combination of v +1 damped sinusoids, which can
be used straightforwardly to determine Pseudovel ocity Shock Response Spectra.

In the present paper analytical expressionswill be found describing corresponding
kinematic functions for the more general case when the damping matrix C of thevDOF
system is not restricted to Rayleigh damping. It will be shown that the relative
displacement x - d will still have the form of v + 1exponentially decaying sinusoids, with
parameters determinable anal ytically from the vDOF system’s eigenstructure and the
parameters of the attached SDOF MSD system. A state-space formulation of the original
system will be used to produce this result.

3 Problem Statement

Consider alinear, stable, damped physical system (represented pictorialy by Sin Fig. 2),
with v degrees of freedom (v-DOFs), having constant mass, damping, and stiffness
matrices represented, respectively, by M, C, and K. For forcing vector f and disturbance

input matrix E, the 2% order matrix differential equation of motion can be expressed by

MX+Cx+Kx=Ef, D

where X, X, and X are vectors representing the generalized physical coordinates,
velocities, and accelerations, respectively. Assumeinitial conditions x(0) and x(0).
Assume a so the equations to be arranged such that the i coordinate X isthe scalar
response d of S, at point D (Fig. 2), to input scalar disturbance f, applied at point R,
with all other elements of input vector f set at zero. The scalar response of the attached

SDOF MSD systemto thisinput is x (Fig. 2). Assume further that massm s
infinitesimally small, so that the motion of mwill not affect that of D. (l.e., there will be
no output feedback, or output impedance, to S).

The objectives of this paper are to determine analytical expressions for the absolute
displacements d(t) and x(t) and for relative displacement

§=x-d, )

for ashock input f, (t) consisting of anideal impulse. Note that the shock input is

“remote,” in that points R and D are not coincident. The displacement d isboth a
response of Sat D and alocal, “induced” input to the attached SDOF MSD system; it isa
“filtered” input, consisting of the shock input f, filtered through the eigensystem

representing S



4 Solution

4.1 State Space Representation of Basic System

Upon defining state variables

=X 3
and Z; = _21 =X, (4)
(1) can be represented inthe following state-space form:
z z
._1 = O_]_ I_l - + (?1 f, (5)
Z, -M7K -M7C||z, M™E|—
- -
z A 2 E,
where O and | represent v x v zero- and identity matrices, respectively. Asindicated
above by (5),
~ |4
Z= : (6)
{Zz}
B 0] I @)
A=k —mc|
0]
and E, = [M _14 ; ®)

so that the state equations have simple form

2=A2+E f. ©)

4.2 Response of Basic System to General Vector | nput

In terms of the matrix exponential exp(Alt) and initial conditions 2, application of
Laplace transforms leads straightforwardly to the following well-known solution to (9):

z=exp (At) 2, +exp(At)+ E, T, (10)



where the asterisk refers to the convolution integral. Accordingly, the state vector has
general solution

x=2z,=[1 0]2=[1 O] {exp(At) 2, +exp(At)+E, T} . (12)

4.3 Response of Basic System to General Scalar I nput

Suppose now that input vector f , of length m, isnonzero only in the k™element, for
some physically meaningful value of k. That is,

f=[0,--0 f(t)0, 0], (12)

with the possibility that k could indicate any element, including first or last. Upon
expanding the disturbance input matrix as

E,=[€.&..&n], (13)
(11) reducesto g:[l O] {exp (At)2(0)+ exp(At)= €, fk} : (14)
State matrix A, can be expressed in terms of its Jordan canonical form J, asfollows:

A= X X (15)

where matrix X, isageneralized eigenvector matrix of A. In particular,

Xy =[X1, X5, X, | (16)
where AX =A% (17)
depicts the eigenvector equation for the i™ eigenvalue, eigenvector pair (li VX! )

Assume for simplicity that the similarity transformation represented by (15)
diagonalizes A, fully to eigenvalue matix A :

)“1
J=A=| . , (18)



with al eigenvalues distinct (nonrepeated). Then (14) can be expressed in terms of the
system eigenstructure:

x=[I O] {xl exp (At)X;* 2(0)+ X, exp(At) X;* #é, fk} (19)

Assume further, again for simplicity:

(1) that al system modes are underdamped (so that the A'swill al occur in complex
conjugate pairs);

(2) that the eigenvalues are arranged by conjugate pairs such that for
A =—¢iw,; + jog (j = ﬂ) the next eigenvalueis 4, = —¢ 0, — joy ; and
(3) that these pairs are arranged in the order of increasing real parts, such that, for
indicesiandj, if —gjo, <—¢ oy theni<j.

In particular, then, for our vDOF system, the 2v x 2v eigenvalue matrix is

— G+ i@y
A — G0~ Joy
J 1=\ = R . = K . ’ (20)
AQV —G,0,, t+ Jahv
L — 6,0, ~ J wdv_
for which the matrix exponentia of (20) is
gt 1 [daention ]
elzt é—GFhL—j abll)t
explAt) = = . (21)
e/12v—lt éfvwn/ + j(de )t
elg/t é_gvahv_j wd/l
Delineate the inverse of the eigenvector matrix by
Y, = X, (22)

and expand thismatrix in terms of itsrow vectors Xir :



y

(19) can now be expressed, using (16) and (21) through (23), in the following form:

ol 013 bz e e Jet )

scalar function

Define the following scalars:

a| = Xi ZO;
and B = Xir € -
2v
Then (24) becomes >_<:Z<ai e’ + B, (eﬂit * f, )> X",
i=1
where x;=[ o]x

isthe upper v x1 partition of x’.

Since the eigenval ues occur in complex conjugate pairs, (27) can be re-expressed as

follows:

X= ; <|:(12i_1e(_§lahl+ja’dl)[ +ay e(—gmhi—iau)t]
i=1
+ [ﬂZi—l e(—giwniﬂwdi )t + ﬂZi e(—giwni+iwdi X ]* fk >Z|C )
(29) reduces to the trigonometric form:

X :Z< e (&, cosmgt + G, SNt )+ e sient (ﬂilcoswdit +3,9 ncodit)* fk> X7,
il

Where &il = O£2i71 + OCZi = 2 Rea2i71 = 2Rea2| f

iy = | (aZi—l —Qy ):—2|m0‘2i—1 =—=21Moy;,

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31

(32)



Bin =Baia+ Ba=2Ref, 1 =2Ref,,

and ,Eiz =j(ﬁzi—l—ﬁzi)=—2|mﬁzi—1:—2|mﬁ2i-

Finally, in phase-shifted trigonometric form,

Z=Zv:<dile_giwmtSin(a’dit“ﬁu)eriz e_gi%itgn(wdit“ﬁ.z)* fk>

i=l

where dilz\/&ii"'&-ﬁz =2|a2i—1|=2|0‘2i|’

c —tan ImAy 4 —tan? —ImA,

oni =|Azia| =],

g =IMAy_; =Imiy,

$iy = tan‘l[gij = tan‘l[—Re%i‘1 j :tan‘l(—Rea2i

di; = \/Biz + Erzu = 2|ﬂ2i—1| = 2|ﬂ2i |

and dip =tan™ i —tan* Refay —tan Ref,
’ Z Im 3,

i2 —ImpBy 4

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

Note from (25), (26), and (36) through (42) that (35) expresses the basic system response
in terms of easily evaluated algebraic functions of the basic system eigenstructure, the

initial conditions, and the disturbance-input matrix.

4.4 Response of Basic System to Single | deal-l mpulse I nput

Consider now the case in which the shock input is an ideal impulse of strength y:

fy =7Uo(t)-

For this situation, the basic system response of (35) reduces readily to

(43)



X= z g ci®nl <di1 S n(codit + q5,1)+ ydi, s n(codit + ¢, 2) > X: . (44)
i=1
With zero initial conditions, the response reduces further to
X= Zy €50 sin(wgt+¢,) X°. (45)

Note that each element of the response in (44) or (45) is alinear combination of damped
sinusoids. In particular, if the displacement d(t) at the SDOF MSD attachment point is

the j™ element x; of x, then designatingthe j™ element of X’ by X oneobtains

from (45) the following scalar equation for the local, or “induced” shock input for SRS
calculations:

d(t): Xy = V c]—iz e siont Sin(wdit +¢i2) ; (46)
i1

where a-i2 =yd 2X|JC . (47)

4.5 Displacement of Attached Mass

The attached-mass response x(t) to induced input d(t) has been shown [5] (using Laplace
transforms) to be

t)= e " Acosw,t + Bsinat
>‘() d Wy

+ Cle sin(wgt +9)| *d(t), (48)
where w0y =w,1-¢?, (49)
= x(O +), (50)

B= 5% y(04)+ 2 x(0+)- 2% d(04),  (5Y)
Wq Wq Dq

C= (52)

2
—n_
g



and (53)

-1 2€‘V1_€2
g=tan | ————|.
1-2%
Note that, whereas parameters ¢;, o, and o pertain to the physical system S(Fig.
2), parameters ¢ , m,, and o, describe the attached (conceptual) SDOF system.

Upon substituting from (46) into (48), and using the results of [5], mass misfound to
have the following response to the input of (43):

x(t)= <eﬂ’“t (Acosw,t+ Bsinagt)
~ .~
+ Czdiz{e_gwnt [— o Sin(a)dt +9 +¢;, +9]j) +085 Sin(codt+ =9 +0, )]

i=1

+e s, sin(ogt+ @+, +0y) —6, Sn(ogt— ¢+ ¢, + 05 )]}>U71(t)’ (54)

1
where S = —/——, (595)
2\uf +vi
1
P S, (56)
2\ uf +pf
0, = tan‘{u—i , (57)
Vi
0, =tan (“—J (58)
and 0 =tanl[—iJ, (59)
~ Pi
for Hi ==Gj@nj = G0, (60)
Vi =0y — W, (61)

The other variables are as defined previoudly.

10



4.6 Relative Displacement 6 (t)

Subtracting (46) from (54), one obtains an expression for the relative displacement:
S(t) =xt)-dlt) = <e“"”’“t (Acos wit + Bsin wqt)
+ E_Zvlaiz{e_g“’”t [ 5y Sin(wgt + ¢ + g + Oy ) + S Sinlogt + ¢ — i, + 0]
’ +esient[s, sin(wgt +¢ + ¢y + 0y ) — 5, sin(wygt —¢ +¢,, +65 ),

“sin(wgt+¢,,)/E]}) ualt), (63)

Using trigonometric addition formulas, one can reduce (63) to the following simple form

[7]:

At)=e<nt(\Wcosmyt +Wssinmgt )+ i e init(\W; cosogt +W, Sinayt) | (64)
i=1
for W1=A_éiai2[51ism(¢+¢|2 +0y)— 55 sin(p— ¢, +05 )], (65)

i=1

W, =B-C d,[6; cos(p+, +6; )~ 5, coslp— ¢y, +65 )], (66)

i=1

W :aiz[651iSin(¢+¢|2+91i)_652i Sin(¢_¢i2+93i)_sm¢|2] . (67)

and W, = (12[6511 COS(¢ +¢ip+0y )_652i COS(—¢ +¢,+0; )_Cos¢i2] ,  (68)

This simplifies readily to

5(t)=VeHsinfogt +®)+ SV e sinfugt +;) | (69)

i=1
where V= W2 + W2, (70)
@ =tan (W, /W, ), (72)

V, = W2 W2 (72)
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Note that (69) expresses the relative-displacement response in terms of easily evaluated
algebraic functions of the basic system eigenstructure, the initial conditions, and the
disturbance-input matrix.

5 Conclusion

Many stable physical systems can be represented as v-degree-of-freedom systems of
linear time-invariant equations in state-space form, using constant mass, damping,
stiffness, and disturbance-input matrices. For such systems the various kinematic
quantities required for determining Shock Response Spectra have historically been found
using the composite modal structure of the physical system and an attached conceptual
system (a single-degree-of-freedom, zero- mpedance, mass-spring-damper system).
Using this method, each time the attachment point changes, a new computation of the
modal structure is required, since the underlying composite system changes as well. For
the case of Rayleigh damping, recent efforts reported simple analytical equations for the
pertinent kinematic quantities, assuming various approximate forms of remote point-
shock impulsive disturbances (ideal impulse, rectangular pulse, and sawtooth). These
equations result from performing two consecutive convolutions analytically, viz., from
shock input to the response of a remote point on the physical system, and from this
remote-point response (that is, of the attachment point) to the response of the attached
system. For the special case of an idea impulse it was shown that, with only asingle
determination of the physical system’s modal structure, the kinematic quantities could be
expressed anal ytically—for any shock-input point, and any attachment point—as a linear
combination of v+1 exponentially decaying sinusoids. The modal structure of the
physical system need be determined only once. The present paper has used state-space
formulation of the equations of motion to accomplish the same task, for the more genera
case of a system having damping that is not proportional.
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