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1 Abstract 

 
The goal of this study is to examine the efficiency and accuracy of several non-derivative 
based minimization algorithms for the design of stress wave attenuators.  The physical 
model under consideration is a one-dimensional composite, composed of elastic or 
viscoelastic layers, subject to a suddenly applied stress.  The performance of each 
composite is measured by the peak of the stress experienced at a point in the composite 
that is distant from the applied load.  We seek to minimize the magnitude of this distant 
stress as a function of the material properties of each layer.  Analytical solutions exist for 
a two-layered Goupillaud material, and the optimal designs from that case will be used as 
a test for our purely computational methods.  We also base our choice of non-derivative 
based search algorithms upon the Goupillaud solution, which displays cusp-like behavior. 

 
2 Introduction 
 
Consider a composite material subject to a suddenly applied stress.  As the stress wave 
propagates it crosses the boundaries between layers, part of the wave’s energy is 
transmitted through the boundary and part is reflected back towards the source.  Through 
superposition of the many reflections and transmissions a complicated wave pattern 
emerges that depends on the contrast between the material properties of the individual 
layers, the geometry of the layers, and even the order in which layers are placed, [1, 3, 
15].  The goal of a stress wave attenuator is to find combinations of materials and 
geometries that will reduce the peak amplitude of this complicated wave phenomenon. 

The computational issue of designing optimal composites is best illustrated by a 
simple example.  Consider a composite of only two elastic layers of equal width with the 
material properties (elastic modulus and density) scaled by the same factor. 
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This guarantees that , the wave speed is the same in each layer.  This is a special 
case of a problem considered by Velo and Gazonas [15], where an elastic Goupillaud 
composite was optimized.   Our composite is illustrated in Figure 1. 
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Figure 1:  A two-layered composite with equal length elastic layers. 

 
Let  be the displacement in layer .  The equations of motion are ( txui , ) i
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A step is stress is applied at  and the composite is fixed at 0=x Lx = , the corresponding 
boundary conditions are 
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Assuming a perfectly bonded composite, the displacement and stress will be continuous 
across the layer interface: 
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This problem can be solved any number of ways.  Our method of choice will be to use 
Laplace transforms.  Using a hat to denote Laplace transformed quantities 
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and assuming that both materials are at rest before the stress step is applied we can find 
the transformed solutions for the displacements in layer 2 to be 
 

( )⎟
⎠
⎞

⎜
⎝
⎛ −= Lx

c
sAu sinhˆˆ 22 . 

 
The coefficient  depends on the transform variable , and can be found by solving the 
system 
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Our primary concern will be to calculate the stress at Lx = , whose transform is found 
easily enough from the formula for . 2û
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To invert the transforms back into the time domain we will employ the DAC 

algorithm [6, 7, 8, 11] with Lanczos’ sigma-factors [10, 13] smoothing out the Gibbs 
phenomenon  present due to discontinuities in the wave front.  The stress history at Lx =  
is shown in Figure 2.   
 

 
Figure 2:  Stress histories measured at Lx =  for two different composites.  The peak 

stress is greater when 2=α . 
 



A brief examination of Figure 2 reveals that changing α  had an effect on the 
peak stress experienced at .  When Lx = 2=α  the stress amplitude reaches a peak of 

023.2 σ , while the stress when 3=α  is always between 0 and 02σ .  It is interesting to 
note that a homogeneous material, subject to the same boundary conditions, will always 
reach a peak stress amplitude of 02σ  [9]. 

It’s natural to ask if there are particular values of α  for which the stress at the 
back of the composite is particularly low, especially lower than 02σ  since this is the peak 
stress in a homogeneous strip.  Unfortunately, the answer is no [15].  However, there are 
an infinite number of composites for which the peak amplitude is exactly 02σ .   Figure 3 
presents the results of a brute force calculation of the peak stress measured at  for 
different values of 

Lx =
α . 

 

 
Figure 3:  The peak stress for the two layer elastic composite as the design parameter α  

is varied. 
 
In [15] it was shown that there are an infinite sequence of ‘optimal’ values of α  for 
which the peak stress is exactly 02σ .  The sequence values are given by 
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The first of these, 1=optα , occurring when 2=k , corresponds to the homogeneous strip.  
The next two, 3=optα  and 8.5≈optα , can be seen on Figure 3.  That a sequence of 
optimal designs exists is not guaranteed.  In fact, when considering strips subject to 
several time varying loads, impact from another rigid or elastic solid, and free or fixed 
back end conditions, only stress step inputs with a fixed back yielded an optimizable 
response [13].   

In order to generalize the results for the case just considered, we extend our model 
in the next section.  We develop a solution for a strip composed of an arbitrary number of 



viscoelastic layers, subject to a stress step on the left and fixed on the right.  Then in the 
following section we examine some simple methods for finding the optimal designs. 
 
3  Physical Model and Solution 
 
We limit our attention to a linear viscoelastic composite subject to a step in stress on one 
end and fixed at the far end, Figure 4. 

 
Figure 4:  A viscoelastic composite subject to a suddenly applied stress on the left and 

fixed on the right. 
 
Using a subscript to denote quantities that are layer dependent, the equations of motion 
are: 
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where iρ  is density,  is displacement, iu iσ  is stress, and overdots denote differentiation 
with respect to time. 

A linear viscoelastic solid has a constitutive relationship of the form 
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where iε  is the linear strain and  is the relaxation modulus.  Because each layer is 
homogeneous, the relaxation modulus is independent of position. 

iG

Assuming the composite is initially at rest we have the following ODE in the 
transformed space  
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and the general solution in the transform space is 
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where  and  are constants (they depend on the transform variable ) whose values 
are determined from the boundary and interface conditions.  The transformed stress is 

iÂ iB̂ s
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We will use a different, but equivalent, expression for the general solution in layer 

1 (the layer subject to the stress), and layer  (the layer fixed on the right).  The 
alternative expressions are chosen for convenience when incorporating the boundary 
conditions. 

N

In layer 1 the displacement and stress are more conveniently expressed as 
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Using the applied stress boundary condition at 0=x , we find that 
 

1
3

01
1 ˆ

ˆˆ
Gs

c
B

σ
−= . 

 
In layer N, the displacement and stress are most conveniently expressed as 
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After application of the fixed boundary at Lx = , we find that  



 
0ˆ =NB . 

 
 Each layer has two undetermined constants from solving the 2nd order ODE,  

and , .  Using the boundary conditions at 
iÂ

iB̂ Ni ,,1K= 0=x  and Lx =  we have found 

two of these,  and .  The remaining 1B̂ NB̂ ( )12 −N  constants are determined using the 
continuity of displacement and stress at each of the 1−N  interfaces within composite.  
The equations from the interface at 1Lx =  are 
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The equations from the 2nd through the ( )ndN 2−  interface are 
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The equations from the  interface are ( stN 1− )
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This is a linear system for the constants .  Because all of 
these constants depend on the transform variable the system must be solved before the 
displacements and stresses can be inverted. 
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 An example of a solution to the above equations follows.  Consider composites 
consisting of 4, 8 and 16 viscoelastic layers.  The relaxation modulus for each layer is of 
the form 
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Each constant in the relaxation modulus is layer dependent.  The initial elastic response is 

, the long term response is , and 0G ∞G β  is the decay parameter.  The relaxation 
modulus gives the response of the solid to an applied and maintained unit strain.  Figure 5 
is a graph of this idealized response. 
 

 
Figure 5:  The Relaxation Modulus gives the stress within a viscoelastic solid 

experiencing a suddenly applied unit strain. 
 

Using the solution outlined in this section we find the stress history, recorded at .  
The results are graphed in Figure 6. 

Lx =

 



 
Figure 6:  Stress history at  in 3 multilayered composite strips.  In each strip the 

initial elastic response alternates between 
Lx =

E  and , the long time response is half the 
initial response, the decay parameter is 1 (in nondimensional units), and the density 

alternates between 

2/E

ρ  and 2/ρ . 
 

For all of the composites in Figure 6, the initial elastic response alternates between E  
and .  The density also alternates between 2/E ρ  and 2/ρ .  This ensures that the wave 
speed, c , is the same in each layer (analogous to the elastic strip in section 2).  The long 
time response is half the initial response for each layer, and the decay parameter β  is the 
same in each layer.  The decay parameter has been chosen to be 
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Because of the viscoelastic nature of the strips the peak stress is less that 02σ  in each of 
the composites. 

Another feature of each of the composites in Figure 6 is that each has equal 
amounts of two different materials.  The difference between the composites is the number 
of layers into which those two materials are divided.  As the number of layers increases, 
the time to the peak stress is lower.  This would lead one to the conjecture that fewer 
layers are a better design in stress wave attenuators.  This conjecture is consistent with 
the information we have regarding the homogeneous elastic solid, whose peak stress is 
always less than or equal an elastic composite’s peak stress. 
 Figure 7 is another brute force calculation of the peak stress in a viscoelastic 
composite as a single design parameter is varied. 
 



 
Figure 7:  The peak stress for a 4 layer viscoelastic composite as the design parameter α  

is varied. 
 

 The material properties for the composites used to generate Figure 7 are presented 
in the following vectors. 
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We can see local minimums occurring near 1=α , 2, 3.5, and 5.  The global minimum 
appears near 5.3=α  (actual value is 5333.3=α ).  In the next section we will consider 
methods that can find the optimal value of α  without resorting to computationally 
burdensome, brute force calculations. 
 
4 Methods of Optimization 
 
Figure 3 is a curve that presents the maximum peak stress, experienced at the fixed end of 
a two layered elastic strip, for different values of the design parameter α .  It was 
constructed by a brute force method where α  was assigned a value, the numerical 
solution of the physical model was run and the peak stress recorded, then  α  was 
incremented and the process repeated.  The increment was 15/1=∆α , so the uncertainty 
in the computed optimal values of α  is α∆ .  However, we have the exact analytical 
results from [15] to verify our numerical results.   
 The brute force method has the advantage of reliability – if we choose the α  
increment small enough, we will always find the optimal designs.  In section 2, when we 



used the brute force method we needed to evaluate the peak stress for 90 different values 
of α , 60 ≤<α , 15/1=∆α .  Typically, running the numerical solution long enough to 
capture the true peak stress takes a minute or two.  For the sake of this argument, let’s use 
the smaller value of one minute.  Calculation of the peak stress for each design from 

0=α  to 6=α , with an α  increment of 1/15 takes 90 minutes.   
What if we want to broaden the class of materials?  If there are two design 

parameters the brute force procedure outlined above would require 8100 minutes, more 
than 5 ½ days.  As design parameters are added and the computational burden of the 
physical model increased with viscoelastic layers, the need for a more efficient 
optimization algorithm is needed.  In the next subsection we consider 3 optimization 
methods for a single design parameter.  By necessity, all of these methods will be non-
derivative based. 
 
4.1 One Parameter Optimization 
 
An examination of Figure 3 guides our choice of optimization methods.  If we look at the 
minimum stress that occurs at 3=α , we can see that the curve has a cusp-like 
appearance.  This non-smooth behavior, especially at the minimum point, means that 
derivative based searches for the minimum will fail.  Therefore, we seek algorithms that 
depend only on function evaluations.  We describe 3 of these non-derivative searches in 
what follows.  The advantage of these methods is that they are robust and reliable.  The 
drawback is efficiency.  Without the information that the derivative provides the 
algorithms must make more of the costly function evaluations. 
 The Fibonacci search [4] is the most basic of the one-parameter algorithms.  
Beginning with an interval [  that we know contains a single minimum, we divide the 

interval into thirds and make function evaluations at 

]ba,

( abaa −+=′
3
1 )  and 

( abab −+=′
3
2 ) .  If ( ) ( )bfaf ′<′  then we know that [ ]ba ′,  contains the minimum, 

otherwise  contains the minimum.  We divide the new interval into thirds and 
continue as before.  When we stop the process we stop we choose the midpoint of the 
current interval as the approximation to the location of the minimum.  This gives an error 
bound of half of the current interval length.  That is, the error does not exceed 

[ ba ,′ ]

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
<

n
Fib

abErr
λ2

1 , 

 
Where  is the number of iterations of the algorithm and n nλ  is the ( )stn 1+  element of 
the Fibonacci sequence:  110 == λλ  and 21 −− += nnn λλλ  for . 2≥n
 Given an interval and an error tolerance we can calculate the number of iterations, 

, of the Fibonacci search required to locate the minimum.  Each iteration requires two 
function evaluations, so a total of  function evaluations will find the minimum. 
N

N2
For example, to find the minimum of the two layered elastic strip of section 2, 

with the same accuracy as the brute force algorithm, requires an error tolerance of 1/15.  



If we have some a priori information that would lead us to believe that a minimum occurs 
between 2=α  and 5=α , then 7 iterations and 14 function evaluations are required  to 
find the minimum.  The computed minimum is 00297.2 σ , found at 0398.3=α , well 
within 1/15 of the exact value of 3=α . 
 A second algorithm is the Golden Search algorithm [4, 14].  The Golden Section 
Search algorithm is a modification of the Fibonacci search that reduces the function 
evaluations.  Once the interval [  containing the minimum is determined, function 

evaluations are made at 

]ba,

( )abraa −+=′ 2  and ( )abrab −+=′ , where ( )15
2
1

−=r  is 

the Golden Ratio.  Again, if ( ) ( )bfaf ′<′  then [ ]ba ′,  contains the minimum.  At the next 
iteration, function evaluations will be made at ( )abraa −′+=′′ 2  and .  
However,  so only one new function evaluation needs to be made.  A similar 
situation occurs when 

( )abrab −′+=′′
ba ′′=′

( ) ( )bfaf ′≥′ .  Therefore, the first iteration requires two function 
evaluations, but each subsequent iteration only requires one more evaluation.  Using the 
same error tolerance as in the brute force method we arrive at 9909.2=α with only 9 
function evaluations. 
 A third algorithm is Brent’s method, [2, 14].  This method uses a Golden Section 
Search until the interval has shrunk to a predetermined width.  At this point the function 
is known at the endpoints of the small interval and one interior point of the interval.  A 
parabola is fitted to these three points and the minimum of the parabola is located.  The 
function is evaluated at this new point, giving a set of 4 points where the function is 
known.  The 3 points with the lowest function values are kept, and the method continues.  
If the interval does not shrink (after multiple iterations), then it returns to the Golden 
Section Search until the interval is contracted and the parabolic interpolations continue. 
 Table 1 is a summary of the performance of these algorithms on the problem 
considered in section 2.  In each case we began with the interval [ ]5,2  and the algorithm 
was terminated when the approximation was within 1/15 of the true minimum, using the 
algorithms’ termination rule, not knowledge of the exact answer. 
 

Table 1:  Performance of several methods of optimization on the example problem of 
section 2, two elastic layers. 

Method Computed optα  Computed Peak 
Stress 

Number of Function 
Evaluations 

Exact 3.0 02σ  N/A 
Brute Force 2.9333 00066.2 σ  46 

Fibonacci Search 3.0398 00297.2 σ  14 
Golden Section 

Search 
2.9909 00096.2 σ  9 

Brent’s Method 3.0096 00087.2 σ  9 
 

Clearly, the three optimization algorithms of this section outperform the brute force 
method.  If there’s anything surprising, it’s that Brent’s method appears to provide no 
advantage of the simpler Golden Section search. 



 Now, we apply each method to the 4 layer viscoelastic composite in Figure 7.  We 
start each algorithm with the interval [ ]5,2 , and use a tolerance of 1/15. 
 
Table 2:  Performance of the optimization algorithms on a 4 layer viscoelastic composite. 

Method optα  Computed Peak 
Stress 

Number of Function 
Evaluations 

Brute Force 3.5333 07932.1 σ  46 
Fibonacci Search 3.5158 07837.1 σ  14 
Golden Section 

Search 
3.5319 07919.1 σ  9 

Brent’s Method 3.5330 07931.1 σ  10 
 

Brent’s method did a better job of matching the results of the brute force method.  
There’s strong evidence that the true minimum is at 5333.3=α , but there is no guarantee 
that this is the case. 
 Other results worth noting are first that despite more than one local minimum in 
the beginning interval, all the methods found the global minimum.  Also, there is the 
question of the need for accuracy.  We have reason to believe that Brent’s method did the 
best at locating optα , but this came at the cost of an extra function evaluation.  The 
relative difference between the Golden Search and Brent’s method is 0.03%, hardly 
worth the extra effort of the function evaluation. 
 
5 Conclusions 
 
We’ve developed a method for finding the displacement, stress, or any other quantity that 
can be derived from these for a viscoelastic composite.  The solid can have any number 
of layers, with any linear constitutive relationship between stress and strain.  The 
composite is subject to a suddenly applied stress on one end and fixed on the other. 
 As the material properties of the layers are changed the composite experiences a 
different peak stress.  In the situations we have considered there always appears to be 
designs, at least locally in the parameter space, that minimize the peak stress.  For an 
elastic Goupillaud solid with only two layers there is an analytic formula for the optimal 
values of the design parameter.  For all other situations we must rely on purely 
computational techniques to find the optimal designs. 
 Even with only a single design parameter a brute force approach to optimization 
is computationally prohibitive.  Minimization algorithms that don’t rely on derivatives 
are essential because of the cusp-like graphs for the peak stress.  The Golden Section 
Search and Brent’s method provide the most reliable results, but the simplicity and fewer 
function evaluations of the Golden Section search make it the most attractive of the 
algorithms tested. 
 Future studies need to address the multiparameter optimization problem.  The 
single parameter optimization by brute force is a burden, but still a reasonable method of 
solution.  When more parameters enter the problem the brute force method is no longer 
viable. 
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