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1. Executive Summary. 

In today’s increasingly complex world of digital command and control, it is seldom 
obvious or intuitive how the introduction of new automation systems will affect the overall 
performance of battlefield command and control systems.  Field observations can account for 
performance factors that are directly observable such as rates of communication flow, rates of 
flow and quality of incoming intelligence.  However, what the human mind does under the 
influence of all of these factors is not directly observable and is the subject of considerable 
experimentation.   

This research addresses this limitation through the development of predictive quantitative 
models of decision making under conditions of uncertainty such as exist in many aspects of 
human performance and certainly in battle-space management.  Utilizing Bayesian statistical 
approaches implemented through Partially Observable Markov Decision Processes (POMDP) 
that describe experiential decision processes moderated by Monte Carlo effects to account for 
performance variability, a series of computer simulations are being developed with the goal to 
predict the quality of decisions possible from a given set of input conditions.     

These simulations are based on cognitive models being developed in a collaborative 
effort through a series of empirical studies that investigate human performance in a sequential 
decision making with uncertainty task using human subjects.  Through this collaboration, the 
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results of these studies are being applied at each stage of the research to predictive computer 
simulations of Army battlefield performance where battlefield automated command and control 
systems are involved.  These simulations, when operational, will allow cognitive effects, such as 
predictive levels of effective decisions possible from a given set of circumstances, to be assessed 
as a battlefield metric.  The usefulness of these simulations will be realized in their ability to 
predict cognitive performance improvements that can potentially be realized through 
modifications of the work system such as organizational changes, new system components, and 
changes in training levels of the team members. 

2. Introduction. 

The time is now.  The place is a U.S. Army command center in a far away land conducting 
combat operations.  To the uninitiated observer this would seem like a place of uncontrolled 
chaos.  Computers, computer generated tactical projection displays, and communications devices 
fill every available space.  People are running back and forth yelling at each other with each one 
having a seemingly singular role to do whatever they are focused upon with no regard to other 
activities around them.  Multiple radios are blaring from all sides of the workspace.  Individual 
groups of 2-3 people are engrossed in huddles in various corners of the area and are oblivious of 
everything else going on around them.  The commander is yelling at a computer operator to get a 
computer generated tactical map projection display updated and current with the admonition at a 
high fever pitch “you are killing me!!!”.  The computer operator is feverishly and frantically 
calling for help from adjacent operators and NCOs…  While it is not obvious to the casual 
observer, there is structure to this chaos and order to the disorder resulting in a carefully 
balanced mix of people, machines, and weapons conducting an orchestrated performance on the 
battlefield.   

Into the midst of all this seeming pandemonium a new communications device is brought on line 
that has been developed by the best and brightest minds that the Army Acquisition community 
can bring to bear on the problem.  Its design promises to increase the rate of communications 
flow into the tactical operations center by 150% with an improvement in data quality by 90% 
(sample numbers for an imaginary system).  However, there has been no chance to validate its 
design promises because of a rapid fielding initiative that put it into the field in an accelerated 
timeline.  Even if an opportunity had been afforded to put the system under field testing 
conditions the results of the test would typically va lidate that the system is or is not working as 
designed and whether it does provide greater communications flow at a higher fidelity.  Even if 
these field tests had been conducted, there would still be the unanswered question of the overall 
effect on the battlefield that the introduction of this new system would have.  This effect would 
be the result of the introduction of a new system component into the command and control 
system with the potential to change the overall performance of the total system.  Furthermore, 
while the physical parameters of the new system can be measured and quantified, the effect of 
these changes on the cognitive performance of the work group and their ability to adapt to 
changes in operational paradigms is much harder to estimate.  In fact, even in optimal laboratory 
conditions it is a complex undertaking to assess cognitive performance factors such as situation 
awareness, individual and team performance and the effects that these factors have on decision-
making performance.  Furthermore, many laboratory based evaluations are conducted as a part of 
a basic research effort and are left to future research to apply to specific application areas. 
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Thus, the development of predictive computer-based models of optimal performance has a 
significant potential to aid in the evaluation of overall work systems where the human is an 
integral component.  This project has an objective to develop computer models of optimal 
performance in the area of decision making under conditions of uncertainty that is the result of a 
coordinated effort that allows basic research utilizing empirical investigations to be directly 
applied into the structure of a predictive computer simulation of decision making. 

2.1. Modeling the human ability to make efficient decisions under conditions of uncertainty. 

One of the most fundamental aspects of human cognition is the ability to make decisions. 
Humans can make decisions in a broad range of domains. For example, everyday decisions are 
made as to what time an individual will depart for work, where or what will be eaten for lunch, 
what will be worn to work in addition to thousands of other decisions. These decisions often 
seem mundane because the ramification of a “poor” decision are not significant. However, other 
decisions appear to be more critical and the ramification of a “poor” decision can appear, and 
often are, more detrimental.  For example, military decisions, medical decisions, and fault 
detection can all have significant ramifications. 

It is important to recognize that most decisions that are made are not “one off” decisions in 
which the decision is made and then the rewards reaped or the punishment endured. Instead, 
most decisions that are made have future ramifications and affect the options and decisions that 
are available later.  One challenge faced by any decision maker is the uncertainty that the 
decision maker has about the true  state of the system.  In most circumstances the true state of the 
system is unknown or hidden.  That is, it cannot be directly observed.  For example, in military 
decisions often there is uncertainty about an enemy’s position, strength and morale.  Given that 
the true state is hidden, there are things that can be done to reduce the decision maker’s 
uncertainty about these states.  For example, the decision maker may attempt to determine the 
enemy’s position by sending reconnaissance to a location where the enemy is believed to be 
located.  When the reconnaissance returns with either an “enemy sighted” or “enemy not 
sighted” report the decision maker must update their belief about the location of the enemy.  

If the observations and actions were all deterministic, updating a belief would be relatively 
simple.  However, in almost all conditions, the observations and actions are probabilistic.  That 
is, the probability of getting an observation given the true state of the environment is not 
necessarily 0.0 or 1.0.  Or, in the example above, there is a certain non-zero probability that the 
reconnaissance mission was sent to the right location and will miss the enemy and send a report 
of “enemy not sighted”.  Furthermore, there may be a non-zero probability that the 
reconnaissance mission falsely sent a report of “enemy sighted” (or false-alarmed) when the 
enemy was not actually at the location.  

Given that the observation and actions are probabilistic, updating a belief given an observation 
and an action can become cognitively difficult.  Furthermore, evaluating the added benefit of a 
specific piece of equipment that changes these probabilities can also become difficult.  The 
current research focuses on a task that is commonly faced by decision makers in the military — 
namely, a seek-and-destroy task. In this task the decision maker is trying to localize and destroy 
an enemy within a specific region. At the decision maker’s disposal are actions that allow him to 
gain information about the true state of the system (i.e., the location of the enemy) in addition to 
changing the state of the system (for example, moving the enemy from being at a specific 
location to the state of Destroyed). The former actions are reconnaissance actions and the latter 
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are artillery actions. The outcomes of these actions are probabilistic. That is, reconnaissance 
actions will not always detect the enemy when a sensor is sent to the enemy’s location. 
Furthermore, the reconnaissance may also falsely report that the enemy is seen at a location in 
which the enemy is not located. Furthermore, the artillery will not always move the enemy to the 
“Destroyed” state when it is sent to the right location. 

2.1.1. The Optimal Observer. 

To best evaluate performance in a task that leads to uncertainty and probabilistic actions, it is 
useful to define the optimal performance within the task. The optimal performance can be 
calculated using Bayesian statistics. However, due to the nature of the current type of task, 
simple Bayesian statistics are insufficient. That is, with simple Bayesian statistics the likelihood 
of the true state of the system can be optimally estimated, but this likelihood does not indicate 
what action should be selected. In order to do action selection, not only must the current state be 
calculated given the previous actions and observations, but also the optimal action to be 
performed in a given belief state must be calculated where a belief state is a particular probability 
distribution across all of the possible states in the environment. 

A variation on classical Bayesian statistics that may well add some additional predictive power  
for sequential decision making under uncertainty is the Partially Observable Markov Decision 
Processes (POMDP) (Cassandra, 1998; Cassandra, Kaelb ling, and Kurien, 1996; Cassandra, 
Kaelbling, and Littman, 1994; Kaelbling, Littman, and Cassandra, 1998; Sondik, 1971).  By 
defining the State Space, Observation Vector, Transition Matrix and the Reward Structure, the 
expected reward for a particular action can be computed. In the following sections a description 
of these actions will be provided.  In addition, a description of how to optimally update an 
individual’s belief (Belief Updating), given these definitions, is provided. 

      An Ideal Observer Model provides optimal performance given the information available in 
the task. Typically ideal observers are not proposed as models of human cognition.  Instead, the 
ideal observer provides a benchmark by which to compare human performance. More 
specifically, these models illustrate what optimal performance should look like.  When human 
performance matches that of the ideal-observer model, one can conclude that the human is 
making use of all of the information in the task.  When the human under-performs the ideal 
observer, specific discrepancies between the human data and the ideal data may illuminate the 
constraints imposed by the human information-processing system. 

      Ideal observer analysis has been used to understand perceptual functions from the quantum 
limits of light detection (Hecht and Shlaer, 1942) to many forms of visual pattern detection and 
discrimination (Geisler, 1989), to reading (Legge and Hooven, 2002; Legge and Klitz, 1997) 
object recognition (Liu and Knill, 1995; Tjan and Braje, 1995; Tjan and Legge, 1998) eye 
movements (Najemnik and Geisler, 2005) and also in reaching tasks (Trommershäuser and 
Gepshtein, 2004).  

2.1.2. Defining the State Space. 

In all problems that are solved using a POMDP architecture, there is a set of states that the 
problem can be in. In a POMDP problem, the true state (State

True
) is not directly observable (i.e., 

it is hidden). For the problems used in this project, the hidden state was defined as the enemy’s 
current position within the 5x5 state space area plus an additional “Destroyed” state that the 
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enemy could transition into following an artillery strike at its current position for a total of a 26 
state space. 

2.1.3. Defining the Observation Vector. 

Although the true state is hidden, the observer typically has actions and observations that provide 
information about the true state of the problem. In the current problem, the observer can fire 
artillery at a specific position or reconnaissance can be sent to a particular location within the 
environment (i.e., one of the 25 locations). The current problem has three possible observations: 
Enemy Sighted, No Enemy Sighted, or No Information. When the observer decides to send 
reconnaissance to a particular location, one of two observations will be received: ‘Enemy 
Sighted’ or ‘Enemy Not Sighted’. In the current problem, the artillery returns only one possible 
observation: ‘No Information’.  This replicates the fact that the artillery firing unit does not see 
the effects of its fires because it is an indirect firing unit and is not able to see where the artillery 
rounds fall.  It must rely on forward observer assets to report back what is termed ‘battle damage 
assessment (BDA)’ in military jargon.  In these models it is the UAV that provides the BDA. 

2.1.4. Defining the Transition Matrix. 

Thus, in this Seek & Destroy problem, the commander has 51 possible different actions. There 
are 25 reconnaissance actions (one to each of the 25 locations in the environment), 25 artillery 
actions (again, one to each of the 25 locations within the environment) and the ‘declare 
destroyed’ option. The transition matrix defines the probability of the resulting state if the 
observer generates a particular action in a specified state (i.e., p(s'|s,a)). In the static form of the 
Seek & Destroy problem there is only one state transition that could occur. When the commander 
fires artillery to where the enemy is located, the enemy will transition into the “Destroyed” state 
with a probability of 0.75.  Probabilities that are assumed for the purpose of this analysis, that are 
merely estimations for the purposes of this discussion, are shown in Tables 1-3.  These values are 
estimates only and are not to be construed as factual.  The determination of valid probabilities is 
left for future field and empirical work. 

Table 1 – The set of actions and their observations for the current Seek & Destroy task. 
(The observations for the reconnaissance action are dependent upon whether the enemy is actually 
within the viewing region of the reconnaissance. Thus, the two possible states are “Enemy Present” 
and “Enemy Not Present”.) 

  

Action Observation State Probability 
Recon Enemy Sighted Enemy Present 0.75 
Recon Enemy Not Sighted Enemy Present 0.25 
Recon Enemy Sighted Enemy Not Present 0.2 
Recon Enemy Not Sighted Enemy Not Present 0.8 

  

Table 2 – Probabilities for Observation from Artillery Strike 
  

Action Observation State Probability 
Strike NoInfo Enemy Present 1.0 
Strike NoInfo Enemy Not Present 1.0 
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Table 3 – Probabilities for Killing Enemy from Artillery Strike 
  

Action Result State Probability of Dead 
Strike Probability of Enemy 

being killed. 
Enemy Present 0.75 

Strike Probability of Enemy 
not being killed. 

Enemy Present 0.25 

Strike Probability of Enemy 
being killed. 

Enemy Not Present 0.0 

  

 

2.1.5. Belief Updating.  

Given an initial probability distribution over the state space, the Observation Matrix and the 
Transition Matrix, hypotheses can be generated about the current state of the problem following 
an action and the returned observation. Equation 1 provides the Bayesian updating rule. 

  (1) 
where 

s’ ≡ true state (of the condition being present within the total of all states, S), 
represented as:  s’ ∈ S 

b ≡ prior belief 
o ≡ observation 
a ≡  action that was generated 

 

Equation 1 specifies how the ideal observer would update its belief that s' is the true state given 
the prior belief (b), the observation (o) and the action that was generated (a). 

To illuminate the process of belief updating, a simple example of a smaller Seek and Destroy 
problem is provided. The Transition and Observation Matrices used in the empirical studies will 
be utilized here.  But to simplify the process a three-state problem will be used instead of a 26-
state problem. More specifically, the enemy will be in one of three states: State

1
, State

2
 or 

Destroyed. The initial (prior) probability of the state will be: State
1
=0.5, State

2
=0.5 and 

Destroyed=0.0 (to simplify, this is represented as [0.5, 0.5, 0.0]) meaning that there is a 50% 
probability of the enemy of being in State

1
 a 50% probability of the enemy being in State

2
, and a 

0% probability of the enemy being in State Dead, i.e., the enemy is alive. 

Assume that the enemy is in State
1
 and that the observer decides to do reconnaissance to State

1
 

and receives a “Enemy Sighted” observation. What is the likelihood of the belief that the enemy 
is in State

1
, State

2
 or State Dead? 

Using Equation 1 the likelihood that the enemy is in State1 can be updated. That is, the desire is 
to compute: p(State1| [0.5, 0.5, 0.0], “EnemySighted”,Recon1). 
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First, compute p(o|s',b,a) or p(“EnemySighted”|State1, [0.5, 0.5, 0.0],Recon1). To do this the 
likelihood of obtaining an observation of “Enemy-Sighted” if State

1
 was the true state is needed. 

In the Observation Matrix section above, the likelihood of correctly identifying the enemy as 
0.75 is defined. The likelihood of the true state being State

1
 given the previous belief and the 

action of Recon
1
 is needed. Because there is no transition possible, these remain at the prior 

probabilities of 0.5.  Finally, the likelihood of receiving the observation “EnemySighted” when 
Reconnaissance is made at State

1
 or   p(‘EnemySighted’|[0.5,0.5, 0],Recon1) needs to be 

computed. 

 
 

Thus, if the first action is to observe at State
1
, the new belief vector would be 

[0.7895,0.2105,0.0]. 

Now, imagine that the observer decided on the action Strike
1
 following the action Recon

1
. To 

update the belief that the enemy is in State
1
 the conditional probability    

p(State1|[0.7985, 0.2105, 0.0], “NoInfo”, Strike1) is computed. 

First, compute p(o|s',b,a) which is the probability of receiving the “NoInfo” observation given 
that the true state is State

1
, the current belief ([0.7895,0.2105,0.0]), and the action Strike

1
. The 

probability of receiving this observation is 1.0. Regardless of the state of the problem, a Strike 
always returns the observation “NoInfo” (see Table 2). This same probability and logic holds for 
computing p(o|b,a). 



Toward The Development Of A Predictive Computer Model Of Decision Making Under 
Uncertainty For Use In Simulations Of U.S. Army Command And Control Systems 

 
Page 8 of 26 

 

The conditional probability p(s'|b,a) also needs to be computed. That is, what is the probability of 
the true state being State

1
 given the current belief and the action Strike

1
.  As described in 

Section 2.1.4 on the Transition Matrix, the probability of transitioning the problem into the 
Destroyed state is 0.75 if the enemy is at the location where the artillery strike occurred. This 
means that there is a probability of 0.25 that the enemy’s state will not change, or that the enemy 
will remain in State

1
 if it was initially in State

1
. 

 

 
Thus the belief vector, following Recon1 with the observation of “EnemySighted” followed by 
Strike1 with an observation of “No Information”, is [0.1996,0.2105,0.5989]. Or 

p(State1)  =  0.1996 

p(State2)  =  0.2105 

p(Dead)  =  0.5989 

2.2. Applying the Decision Making Under Uncertainty Model. 

Using cognitive models such as those described above now allows computer simulations of 
command and control systems configured around task performance analysis based on previous 
work (Middlebrooks, 2001; Middlebrooks, 2003; Middlebrooks, 2004; Middlebrooks et al., 
1999a; Middlebrooks et al., 1999b; Middlebrooks and Williges, 2002; Wojciechowski, Plott, and 
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Kilduff, 2005), to now be structured to incorporate cognitive decision making as a performance 
metric using this belief updating model.  The steps in this process resemble the well known 
Observe-Orient-Decide-Act (OODA) model (Belknap, 1996; Salas, Morgan, Glickman, 
Woodard, and Blaiwes, 1986).  The decision actions here described consist of gathering 
information, updating the belief about the environment or state space, taking an action to 
accomplish an objective in the state space, and then making a decision of whether to continue the 
mission or terminate it with an assessment of either mission success or failure.  The example in 
this military command and control scenario employs a unmanned aerial vehicle (UAV) to gather 
the intelligence, artillery to take an action to destroy an enemy somewhere within the state space, 
and belief updating to evaluate the situation after each action and either continue or declare 
‘mission complete’.   

To structure this scenario in a computer simulation, the programming environment of Command, 
Control, and Communications: Techniques for the Reliable Assessment of Concept Execution 
(C3TRACE) (Kilduff, Swoboda, and Barnette, 2005; Plott, 2002; Plott, Quesada, Kilduff, 
Swoboda, and Allender, 2004) is employed.  C3TRACE, developed through funding by the 
Human Research and Engineering Directorate of the U.S. Army Research Laboratory, is an 
adaptation of the commercial discrete event programming language MicroSaint™ (Schunk and 
Plott, 2004).  While the basic MicroSaint™ programming language allows for the development 
of task based computer simulations of real world systems and processes to be represented, 
C3TRACE has embedded data structures that augment MicroSaint™ to allow for representation 
of Army command and control systems. 

2.2.1. Simulation Design. 

C3TRACE programs are implemented using discrete event language constructs common to any 
MicroSaint™ simulation program.  The top level of a command and control sub-workgroup 
within a sample organization is shown in the example depicted Figure 1.  Here messages 
received by the radio operator are distributed according to their sub ject content.  Situation 
Reports (SITREP) are passed to the S3 Operations officer, Logistics Reports are passed to the S4 
Logistics officer for action and so on.  If, for example, a mission directive such as seek out and 
destroy an enemy, is received it is passed to the commander for action.  There are different 
reactions that might be experienced to such a directive.  The commander might communicate 
back to the originating authority to clarify information, an initial estimate of the situation before 
taking action might be performed, an updating of the situational awareness before taking action 
might be performed, or, the mission might be undertaken as directed.  In this case, as depicted in 
the green box in Figure 1, what is referred to as the Decision Making Under Uncertainty 
(DMUC) process would be initiated to execute the mission. 
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Figure 1 – C3TRACE Command and Control Simulation Vignette 

 
Figure 2 illustrates a modeled decision process that is very similar to the OODA model.  This 
diagram represents an iterative process where the decision maker makes an initial estimate of the 
situation and then begins an iterative process of either gathering additional information (flying a 
UAV mission) or taking an action to destroy the enemy (firing artillery).  When the commander 
believes that the enemy has been destroyed, a mission complete decision is made and the results 
of the decision are realized.  If the enemy was destroyed and the decision maker made that 
correct assessment, then a positive reward resulting from a good decision is applied to the 
performance of the overall system.  If the enemy was not destroyed and the decision maker 
believed that it was destroyed, then a negative battlefield outcome is applied to the simulation.  
Likewise, if the enemy was destroyed but the decision maker believed it was not, then the results 
of poor decision making are applied.  This process of iterative action can be generalized to 
similar scenarios where information is gathered (Observe), belief updating occurs (Orient), 
decisions are made for mission success (Decide), and actions are taken to accomplish the mission 
(Act).  The examples of employing a UAV and firing artillery are used here to simply provide a 
tangible example of how this type of activity might occur.   
 
2.2.2. The DMUC Decision Loop. 

Referring to Figure 2, the top level logic for this model can be examined.  After initiating the 
decision sequence and performing an initial estimate of the situation, the commander updates his 
belief vector, defined as the belief about the current situation regarding the enemy, and then 
begins an iterative process of looking for information or taking an action to accomplish the 
mission.  When this process has reached some level of belief that the mission is accomplished, 
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the commander terminates the action and completes the decision process by either declaring a 
mission ‘success’ or ‘failure’. 

 

 
 

Figure 2 – Decision Making Under Uncertainty Model 

If the initial desire is to obtain additional information, a UAV is sent to a specified location to 
attempt to locate the enemy.  The UAV is the information gathering or battle damage assessment 
(BDA) tool available to the commander to update his belief vector about the enemy.  If the target 
is already dead from previous artillery action, then there is no correct location for the enemy 
because it does not exist as it is dead.  If the enemy is alive and the UAV is sent to the correct 
location then it has a probability, according to Table 1, of either detecting or not detecting the 
enemy representing the accuracy of the UAV.  From this it will either correctly or incorrectly 
report that the enemy was found.  Likewise, if it is sent to a location where the enemy is not 
located, or if the enemy is already dead, it may correctly or incorrectly report the enemy sighted 
again according to Table 1.  The values in Table 1 are only sample estimates for use in the 
development of this model and do not represent any actual system currently in existence.  After 
the UAV mission is flown the commander evaluates the report from the UAV through the 
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process of updating his belief vector (described below) and, using this new information, decides 
what process to invoke next. 

If the commander decides to fire artillery (which is representative of taking a positive action to 
do something to accomplish the mission) then the probability exists that either the right or wrong 
location will be fired upon.  If the artillery fires on the wrong location then the only outcome will 
be to miss the target.  If the correct location is fired upon then the artillery will either kill or not 
kill the enemy according to the circular area of probability for the type of artillery fired.  
Independent of where the artillery is fired, the only report that is sent back to the commander is 
that the artillery fired upon the location directed.  This represents the fact that artillery is an 
indirect fire weapon and the firing unit never actually sees the target.  It is up to the forward 
observer, in this case the UAV, to report back as to the actual target situation, i.e., to provide the 
BDA.  It is then up to the commander to evaluate the firing data and information from previous 
UAV reconnaissance missions to decide if to continue the mission or declare the enemy is dead 
and end the mission.   

When the commander believes that the enemy has been destroyed, then mission complete is 
declared and the commander is faced with either the rewards of a successful or good decision 
sequence where the enemy was killed, meaning that the mission accomplished, or the effects of a 
bad decision where the mission was not accomplished. 

2.2.3. Evaluating the Current Information. 

Figure 3 illustrates the inputs feeding the sequence of evaluating the current situation, and 
updating of the belief vector and the resulting choice for the next action.   
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Figure 3 – Belief Vector Updating 

 
The actual logic for each of these activities occurs within the C3TRACE program using C Sharp 
(C#) code statements embedded within the beginning and ending effects sections of each of the 
task blocks in the diagram.   
 
A verbal description of the computer logic for the ‘Evaluate Report’ task takes the form: 
 
For UAV Mission Cases: 

If (UAV mission ordered) & (Enemy Located at specified location) 
 Then, There is a positive probability that the enemy will be reported sighted. 
If (UAV mission ordered) & (Enemy Not Located at specified location, or is dead) 
 Then, There is a small probability that the enemy will still be reported sighted. 

For Arty Mission Cases: 
If (Arty mission ordered) & (Enemy Located at specified location) 
 Then, There is a positive probability that the enemy will be destroyed. 
If (Arty mission ordered) & (Enemy Not Located at specified location) 
 Then, There is a zero probability that the enemy will be destroyed. 
For all Arty mission cases, 
 Report = “No Info”. 

  
  
2.2.4. Updating the Belief Vector. 

Figure 3 illustrates the Update Belief Vector task that follows the Evaluate Report Task.  The 
pseudo logic that is implemented in C# for this task is: 
For UAV Mission Cases: 

If (UAV mission ordered) & (Enemy Located at specified location) 
 Then, Update Belief Vector with positive information for State Reconed. 
 Then, Update Belief Vector with negative information for State Not Reconed. 
 Then, Update Belief Vector with negative information for State Dead. 
If (UAV mission ordered) & (Enemy Not Located at specified location, or is dead) 
 Then, Update Belief Vector with positive information for State Not Reconed. 
 Then, Update Belief Vector with negative information for State Reconed. 
 Then, Update Belief Vector with negative information for State Dead. 

For Arty Mission Cases: 
If (Arty mission ordered) & (Enemy Located at specified location) 
 Then, Update Belief Vector with positive information for State Fired Upon. 
 Then, Update Belief Vector with negative information for State Not Fired Upon. 
 Then, Update Belief Vector with positive information for State Dead. 
If (Arty mission ordered) & (Enemy Not Located at specified location) 
 Then, Update Belief Vector with negative information for State Fired Upon. 
 Then, Update Belief Vector with negative information for State Not Fired Upon. 
 Then, Update Belief Vector with negative information for State Dead. 

  
3. Discussion / Results. 

Current work has focused on the simplest possible state space which consists of 2 location states 
and a state representing the status of the target enemy, either Dead or Alive.  While a location 
state of only two conditions appears to be trivial and unrelated to any actual human performance 
condition, even this simple arrangement can relate to actual performance.  While this simple 3 
state model is not sufficient for actual analysis, it forms the basis for future, more complex, 
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models to become predictive of selected decision processes.  When faced with a decision choice 
a human decision maker many times has one of two selections to make.  Referring to Figure 4, 
whether it is right versus left, good versus bad, right versus wrong, high payoff versus low 
payoff, cheap versus expensive, or whatever the criterion, a two state response choice augmented 
by one result state (in this case Dead), can be descriptive of actual conditions.  Also, even in this 
most simple of state environments, the conditional probability logic can become exhaustive.  
Computer runs with these conditions serve to illustrate the conditional probabilities resulting 
from relatively simple actions in this state space. 

 

 
Figure 4 – 3 State Space 

 

As shown in Figure 4 in this simple state space case, the enemy is either located in State1 or 
State2 for a binary location condition, with a condition of either Dead or Alive as indicated by 
State3.   

3.1. Action Sequence Assessment:  Recon1, Strike1, Recon2-N  

In order to examine the conditional probability logic associated with actions in this state space, 
some examples of actions and resulting belief vectors will be examined.  The assumptions are 
that the enemy is located in State1 and that it is static, i.e., not moving.  Also, there is an equal 
probability in the belief of the commander that the enemy could be in either of the location states 
and that the enemy is alive.  The initial belief vector is thus [0.5, 0.5, 0.0], meaning a 50% 
chance of being in location State1, a 50% chance of being in location State2, and a 0.0% chance 
of being in State Dead, i.e., the enemy is alive. 

Assume the following sequence of actions:   

1. Conduct a UAV mission into State1, called Recon1 
2. Fire artillery strike into State1, called Strike1 
3. Conduct continuous UAV missions into State1, called Recon2 to ReconN. 

Using the POMDP methodology in the C3TRACE DMUC model, examine the resulting beliefs 
that the decision maker has following the decision to perform this series of actions.  The output 
from this simulation run is illustrated in Table 4, and Figure 5. 
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Table 4 – Probabilities for Sequence Recon1, Strike1, Recon2-N 
  

NumDMUC_
Iterations Action

State_Space[1,1] - 
Cell1

State_Space[1,2]-  
Cell2

State_Space_
Dead

1 Recon1 0.5000 0.5000 0.0000
2 Strike1 0.7895 0.2105 0.0000
3 Recon2 0.1974 0.2105 0.5921
4 Recon3 0.4797 0.1365 0.3838
5 Recon4 0.7757 0.0588 0.1655
6 Recon5 0.9284 0.0188 0.0528
7 Recon6 0.9799 0.0053 0.0149
8 Recon7 0.9945 0.0014 0.0040
9 Recon8 0.9985 0.0004 0.0011

10 Recon9 0.9996 0.0001 0.0003
11 Recon10 0.9999 0.0000 0.0001
12 Recon11 1.0000 0.0000 0.0000
13 Recon12 1.0000 0.0000 0.0000
14 Recon13 1.0000 0.0000 0.0000  

  

Sequence (All to State1 w/Enemy @ State1):  Initial, Recon1, Strike1, Recon2-
ReconN
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Figure 5 – Belief Graph for Action Sequence Recon1, Strike1, Recon2-N 



Toward The Development Of A Predictive Computer Model Of Decision Making Under 
Uncertainty For Use In Simulations Of U.S. Army Command And Control Systems 

 
Page 16 of 26 

 

 

These actions (first a recon, then a strike, and then only recons) produce a predicted belief 
pattern of almost 80% after the first recon that the enemy is in fact at State1.  After the strike the 
belief of being in State1 drops to 21% while the belief that the enemy is dead goes from 0% to 
almost 60%.  However, if the only succeeding actions at this point are to perform recons to State1 
which have no ability to harm the enemy because only an artillery strike can cause damage, then, 
because of successive incremental probabilities that the enemy might still be at State1, and 
therefore not Dead, the belief value for State1 asymptotes at 100% while the values for State2 
and State3 Dead go to 0%. 

3.2. Action Sequence Assessment:  Recon1, Strike1-N  

Now consider the action sequence of an initial recon, Recon1, followed by multiple artillery 
strikes, Strike1-N.  The previous assumptions for enemy location and initial belief vector are the 
same. 



Toward The Development Of A Predictive Computer Model Of Decision Making Under 
Uncertainty For Use In Simulations Of U.S. Army Command And Control Systems 

 
Page 17 of 26 

 

Table 5 – Probabilities for Sequence Recon1, Strike1-N 
  

NumDMUC_
Iterations Action

State_Space[1,1] - 
Cell1

State_Space[1,2]-  
Cell2

State_Space_
Dead

1 Recon1 0.5000 0.5000 0.0000
2 Strike1 0.7895 0.2105 0.0000
3 Strike2 0.1974 0.2105 0.5921
4 Strike3 0.0493 0.2105 0.7401
5 Strike4 0.0123 0.2105 0.7771
6 Strike5 0.0031 0.2105 0.7864
7 Strike6 0.0008 0.2105 0.7887
8 Strike7 0.0002 0.2105 0.7893
9 Strike8 0.0000 0.2105 0.7894

10 Strike9 0.0000 0.2105 0.7895
11 Strike10 0.0000 0.2105 0.7895
12 Strike11 0.0000 0.2105 0.7895  

  

 

Sequence (All to State1 w/Enemy @ State1):  Initial, Recon1, Strike1, Strike2-
StrikeN
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Figure 6 – Belief Graph for Action Sequence Recon1, Strike1, Strike2-N 
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After the first two belief updates, which are the same as in the previous runs, the belief values for 
the enemy being dead continue to rise with successive artillery strikes but asymptote at 78% 
while the belief value for the enemy still being in State1 goes to zero.  This is offset by a 
suspected belief condition for the enemy being at State2 which is 21%.  Since the belief 
probabilities for all three states must sum to 100% representing the complete belief condition, 
this causes the predicted belief for the enemy actually being dead to only max out at 78% even 
with successive artillery strikes each of which have the ability to completely kill the enemy.  
Actually, the C3TRACE model had the enemy killed after the first artillery strike, but the 
predicted belief by the commander has the values shown. 

3.3. Action Sequence Assessment:  Recon1-N  

To check the response of the model, additional runs were made of only recon missions and only 
artillery missions.  Table 6 and Figure 7 show the results for the case of only flying the UAV for 
multiple recons into State1.  Initial conditions remain the same as before. 
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Table 6 – Probabilities for Sequence Recon1-N 

  

Action
State_Space[1,1] - 

Cell1
State_Space[1,2]-  

Cell2
State_Space_

Dead

Recon1 0.5000 0.5000 0.0000
Recon2 0.7895 0.2105 0.0000
Recon3 0.9336 0.0664 0.0000
Recon4 0.9814 0.0186 0.0000
Recon5 0.9950 0.0050 0.0000
Recon6 0.9987 0.0013 0.0000
Recon7 0.9996 0.0004 0.0000
Recon8 0.9999 0.0001 0.0000
Recon9 1.0000 0.0000 0.0000

Recon10 1.0000 0.0000 0.0000
Recon11 1.0000 0.0000 0.0000
Recon12 1.0000 0.0000 0.0000  

  

 

Sequence (All to State1 w/Enemy @ State1):  Initial, Recon1, -ReconN
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Figure 7 – Belief Graph for Action Sequence Recon1-N 



Toward The Development Of A Predictive Computer Model Of Decision Making Under 
Uncertainty For Use In Simulations Of U.S. Army Command And Control Systems 

 
Page 20 of 26 

 

Here, as would be predicted by common sense logic, the dead state remains at zero as recon 
missions have no ability to damage the enemy.  The belief probabilities for the enemy at State1 
and State2 complement each other with the State1 belief that asymptotes at 100% while the State2 
belief asymptotes at 0%. 

3.4. Action Sequence Assessment:  Strike1-N  

Finally, Table 7 and Figure 8 show the results for the case of only firing artillery for multiple 
strikes at State1.  Initial conditions remain the same as before.  In this case, while the artillery has 
the ability to kill the enemy, it does not have the ability to report back its effects.  Thus, the 
belief probability of the commander for both where the enemy is located and what his dead state 
is, is non existent as artillery strikes only report back that the mission was fired.  As a result, only 
firing artillery will provide no information to the commander as to the status of the enemy even 
though the artillery might have actually destroyed the enemy.  Thus, successive artillery strikes 
to State1 result in no change to the belief that the enemy is at State1 while causing only a 
maximum belief of 50% that the enemy might have been destroyed by the artillery missions.  
These models represent the total belief possible in the commander with an indication of 100% 
summed from all the individual beliefs.  As a result of this 100% possible belief, this causes the 
belief that the enemy is at State2 to asymptote at 0%. 
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Table 7 – Probabilities for Sequence Strike1-N 

  

NumDMUC_
Iterations Action

State_Space[1,1] - 
Cell1

State_Space[1,2]-  
Cell2

State_Space_
Dead

1 Strike1 0.5000 0.5000 0.0000
2 Strike2 0.1250 0.5000 0.3750
3 Strike3 0.0313 0.5000 0.4688
4 Strike4 0.0078 0.5000 0.4922
5 Strike5 0.0020 0.5000 0.4980
6 Strike6 0.0005 0.5000 0.4995
7 Strike7 0.0001 0.5000 0.4999
8 Strike8 0.0000 0.5000 0.5000
9 Strike9 0.0000 0.5000 0.5000

10 Strike10 0.0000 0.5000 0.5000
11 Strike11 0.0000 0.5000 0.5000
12 Strike12 0.0000 0.5000 0.5000
13 Strike13 1.0000 0.0000 0.0000

 
  

Sequence (All to State1 w/Enemy @ State1):  Initial, Strike1, Strike2-StrikeN
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Figure 8 – Belief Graph for Action Sequence Strike1-N 
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4. Conclusions  / Continuing Work. 

This project is at the initial stage of developing a quantitative predictive model of optimal 
decision making performance in a form usable in simulations of command and control activities.  
The Bayesian statistical approach to the modeling is not intended to be construed as an attempt at 
presenting a human cognitive model of decision making, but rather an attempt to understand 
what optimal performance could be in a given set of circumstances.  Once this optimal 
performance is understood then the Bayesian models can be used to compare predicted optimal 
performance against actual observed human performance data to gain an understanding of how 
human cognitive limitations can be affected by changes to different components of the human-
computer interfaces in the work system.  Some of the human performance areas where this 
technique might be applied include memory, decision strategy, and perception, to name a few.  
This technique has the promise to allow investigations of how modifying technology can effect 
decision strategies as they are represented by battlefield success and the cost of achieving that 
success. 

The work to date has been and continues to be a partnership between basic empirical research 
that is investigating optimal performance through the modification of belief presentations and the 
accuracy of belief vectors, and applied research working to develop simulations of highly 
dynamic battlefield performance that are moderated by predicted optimal performance conditions 
existent within the workgroup by employing the C3TRACE modeling environment.   

These initial efforts have developed the framework for a more complex series of models by 
developing performance algorithms based on a simple 3 element state space of 2 location states 
and one status state (Dead).  The results presented here are not intended to provide a basis for 
actual investigative work.  These data are included only for the purpose of illustrating the 
potential for this research.  Future work will expand the effort to a 5 state space environment of a 
2 x 2 location grid + Dead and on to a 26 state space environment of a 5x5 location grid + Dead.  
The current empirical work is based upon the 5x5 location grid + Dead, or 26 state space 
environment, condition.  Also, the current work is based upon an enemy statically located in the 
grid.  Future work will incorporate a dynamic enemy moving within the location grid according 
to some predetermined algorithm. 
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