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1 Executive Summary

In 1997 Peter Shor showed that a quantum computer would be able to factor
numbers exponentially faster than a classical computer [15]. Since the difficulty
of factoring large numbers is crucial to several widely used encryption schemes,
quantum computation is of great interest to the United States Army and other
government agencies. However, although some experiments have succeeded in
implementing quantum computation for special problems with a small number
of quantum bits (“qubits”), it is not yet known whether quantum computers
can be built on a more practical scale. In particular, interaction of a quantum
system with its environment can corrupt the desired evolution of the system–
a phenomenon known as “decoherence.” Minimizing decoherence is therefore
crucial in the design of any quantum computational system.

One method of minimizing decoherence is to perform quantum operations
in a time-optimal manner. Khaneja, Brockett and Glaser [8], [9] have designed
and implemented time-optimal controls for a nuclear magnetic resonance (NMR)
quantum spin system with two qubits. Time-optimal control for the general case
of three or more qubits is still an unsolved problem.

This paper reports a partial solution to a time-optimal quantum control
problem for an NMR three-spin chain system, progress towards a complete
solution, and also progress in solving the general NMR time-optimal control
problem for three and four spins.
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2 Time Optimal Control of NMR spin systems

2.1 NMR systems as control systems

In non-relativistic quantum mechanics the evolution of the wave function |ψ(t) >
of an n-qubit quantum system at time t is given by

|ψ(t) >= U(t)|ψ(0) > (1)

where |ψ(0) >∈ C2n

is the initial wave function and the unitary operator U(t) ∈
SU(2n) evolves according to the time-dependent Schrödinger equation

U̇(t) = − i
~
H(t)U(t) (2)

where U(0) = I (the identity matrix) and H(t) is the Hamiltonian of the system
at time t [14].

In controlled quantum systems the Hamiltonian H is a function of control
inputs uj as well as time. However, since the control inputs themselves can be
regarded as functions of time, the time-optimal control problem can be written
as a time-dependent problem. The quantum optimal control problem is to
generate a desired unitary operator UF in the least possible time. By (1) and (2),
the problem of finding a time-optimal path from U(0) = I to UF amounts to
finding time-varying controls uj(t) so that the resulting path U(t) defined by (2)
is as short as possible, in a sense that will be defined in what follows.

Although the general state space for an n-qubit quantum control problem
is the Lie group SU(2n), the state space can often be reduced to a quotient of
this group. Such is the case with the first problem below.

2.2 Problem 1: Optimal Control of a Three-Spin Chain

A three-spin chain is a system of three nuclear spins situated at roughly equal
intervals along a straight line. The complete state space for this system is SU(8),
but the optimal control problem can be reduced to finding a time-optimal path
in SO(4). The equation of the control system in this reduced state space is

γ̇(t) = (u1(t)X1 + u2(t)X2 + u3(t)X3)γ(t) (3)
γ(0) = I

where γ(t) ∈ SO(4) for each t, u1(t), u2(t), u3(t) are the controls and

X1 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , X2 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,

X3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


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are linearly independent elements of the Lie algebra so(4).
The following interpretation of equation (3) is useful. Let γ : [a, b] → SO(4)

be a piecewise smooth solution curve of (3) generated by some choice of control
functions uj . Then equation (3) states that if the velocity vector γ̇(t0) exists, it
must lie in a certain three-dimensional vector space based at γ(t0), namely

γ̇(t0) ∈ span {X1γ(t0), X2γ(t0), X3γ(t0)}.

2.2.1 Controllability

Let D be the 3-plane field (or distribution) on SO(4) defined at each point
γ ∈ SO(4) by

Dγ = span {X1γ,X2γ,X3γ}; (4)

that is, D ⊂ TSO(4) is the 3-plane field consisting of right translations of
span {X1, X2, X3}. Then the above interpretation of (3) can be summarized by
stating that every smooth solution curve of (3) is tangent to D. This 3-plane
field has the following property.

Definition 1 Let D be a k-plane field on a smooth manifold M with dimension
m ≥ k. D is called bracket-generating if at each point p ∈ M , iterated Lie
brackets of the vector fields locally spanning D in a neighborhood of p span the
tangent space TpM .

It is easy to check that D is a bracket-generating 3-plane field. By a theorem
due to Chow, this has a useful consequence for the control system defined by (3).
To explain this, we need another definition.

Definition 2 Let M be a smooth manifold with a smooth k-plane field D ⊂
TM . A curve γ : [a, b] → M is called admissible if, whenever γ̇(t) exists,
γ̇(t) ∈ Dγ(t).

Theorem 1 (Chow, 1935) Let D ⊂ TM be a smooth k-plane field on a con-
nected manifold M . If D is bracket-generating, then given any two points
p, q ∈ M , there is a piecewise-smooth admissible curve γ : [a, b] → M with
γ(a) = p, γ(b) = q.

Proof. See [4] for a proof. 2

Since the state space in question, SO(4), is a connected manifold, it follows
that the any desired final state γF ∈ SO(4) can be reached from the identity I
by a piecewise control curve γ : [a, b] → SO(4) whose smooth components are
tangent to D, that is, a curve that obeys the equation (3). In the language of
control theory, the system is controllable: that is, any desired final state can be
reached from the initial state using the controls uj .

3



2.2.2 Time-Optimal Controls for the Three-Spin Chain

The time-optimal control problem is to find an admissible curve γ : [a, b] → SO(4)
that locally minimizes a quadratic length functional, called a sub-Riemannian
metric, defined on admissible curves as follows.

Definition 3 Let M be a smooth manifold equipped with a bracket-generating
k-plane field D.

1) A smooth inner product 〈 , 〉 on the fibers of D ⊂ TM is called a sub-
Riemannian metric.

2) The sub-Riemannian length of a smooth admissible curve γ : [a, b] → M
is

L(γ) =
∫ b

a

√
〈 γ̇(t), γ̇(t) 〉 dt. (5)

(If γ is piecewise-smooth, extend this definition in the obvious manner.)

3) The sub-Riemannian distance between two points p and q in an Engel
manifold is

D(p, q) = inf{L(γ) : γ is a admissible curve connecting p and q }

The problem of finding time-optimal controls for the system (3) is equivalent
to the problem of finding sub-Riemannian geodesics for the length functional (6)
where D is the 3-plane field defined above in (4). In local coordinates this
functional has the form

L(γ) =
∫ b

a

√
p2
1 + p2

2 + p2
3 dt, (6)

where pi is the component of γ̇(t) in the Xi direction, for i = 1, 2, 3.
The admissible curves γ of the system (3) are subject to the linear velocity

constraints encoded by the 3-plane field D, so it is a priori possible that some
admissible curves do not admit any nontrivial C1 variations (see [3] for the
conditions under which this occurs). In such a case the admissible curve is called
rigid and the usual methods of finding geodesics through variational vector fields
cannot be used. However, when a sub-Riemannian geodesic is regular (that
is, not rigid) a method for solving constrained variational problems called the
Griffiths formalism may be used. The interested reader may refer to [6] for a
description of this method; the papers [2] and [5] contain specific uses of the
griffiths formalism.

In this paper the details of the Griffiths formalism calculation for the three-
spin chain problem are omitted for the sake of brevity. However, the result of
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the calculation is that the Euler system of the regular geodesics is

λ̇1 = λ2λ4,

λ̇2 = λ3λ6 − λ1λ4,

λ̇3 = −λ2λ6,

λ̇4 = λ3λ5,

λ̇5 = −λ3λ4 + λ1λ6,

λ̇6 = −λ1λ5. (7)

By inspection, the following are conserved quantities of the system (7):

λ2
1 + λ2

2 + λ2
3 = C1, (8)

λ2
4 + λ2

5 + λ2
6 = C2, (9)

λ1λ3 − λ4λ6 + λ2λ5 = C3, (10)

where C1, C2 and C3 are constants. By the general theory elaborated in [2],
solution curves of the Euler system (7) lie on coadjoint orbits in the cotangent
space so(4)∗. The conservation laws (8), (9) and (10) bring the problem down
to a 3-dimensional submanifold of so(4)∗.

The system (7) is amenable to numerical solution (for example, the standard
Runge-Kutta 4th-order algorithm in Maple V is stable on (7)), and solutions
to (7) may be lifted to the Lie group SO(4) via a generalization of Noether’s
theorem [2]. In that sense the problem of finding optimal controls has been
solved.

However, these solutions are not convenient for use by experimenters. The
best possible solution would be a closed-form solution for λ1, . . . , λ6, depend-
ing on boundary conditions. The current strategy is to exploit the canonical
symplectic form on the coadjoint orbits and also on so(4)∗ to obtain additional
conservation laws; work continues on this problem and results will be announced
in the spring of 2006.

2.3 Time-optimal control of more general NMR spin sys-
tems

The general time-optimal control problem for an n-qubit NMR system is to find
optimal solution curves for equation (2)

U̇(t) = − i
~
H(t)U(t)

where U(t) takes values in the state space SU(2n). The general Hamiltonian
for an NMR system can be written as

H(t) = Hd +
m∑

j=1

uj(t)Hj (11)
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where Hd is the drift Hamiltonian corresponding to internal couplings, the uj(t)
are time-varying controls, and the Hj are the rf or control Hamiltonians which
can be externally affected [8]. Since the state space SU(2n) is a compact Lie
group, the system is controllable if the iterated Lie brackets of {Hd,H1, . . . ,Hm}
generate the Lie algebra su(2n) [7]. Note carefully, however, that since the drift
term is uncontrolled, the solution curves of (2) are tangent to a field of affine
planes, not a distribution.

The presence of the nonzero drift term therefore means that the time-optimal
geometry is not, in general, sub-Riemannian. The two-qubit case is a special
exception. In [8] Khaneja, Brockett and Glaser showed that for a two-qubit
NMR system, the state space can be reduced to SU(4)

SU(2)⊗SU(2) . This reduced
space is a Riemannian symmetric space, and their analysis exploited this fact
to find optimal solutions using the methods of sub-Riemannian geometry.

For higher numbers of qubits the coset space is not a symmetric space.
In principle, the Pontryagin Maximum Principle [13] can be applied to these
problems. For the general four-qubit problem, the complete state space SU(16)
has dimension 216 − 1 = 255, so a priori this is a computationally intensive
task. For this problem the following general plan will be followed:

• examine ways in which the state space may be reduced, perhaps to the
coset space

S =
SU(16)⊗4
1 SU(2)

;

• apply the Pontryagin Maximum Principle and methods from exterior dif-
ferential systems to find optimal paths;

• find numerical solutions;

• search for closed-form solutions for path planning (more difficult).

A full report on this problem will also be issued in the spring of 2006.
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tions, Birkhäuser, Boston, 1983.

[7] V. Jurdjevic and H. Sussmann, “Controllability of Nonlinear Systems,”
Journal of Differential Equations 12 (1972), pp. 95 - 116.

[8] N. Khaneja, S. J. Glaser and R. W. Brockett, “Time optimal control of
spin systems,” Phys. Rev. A. 63: 032308 (2001).

[9] N. Khaneja, S. J. Glaser and R. W. Brockett, “Sub-Riemannian geometry
and time optimal control of three spin systems: coherence transfer and
quantum gates,” Phys. Rev. A. 65: 032301 (2002).

[10] S. J. Lomonaco (ed), Quantum Computation: A Grand Mathematical Chal-
lenge for the Twenty-First Century and the Millennium, Proc. of Symposia
in Applied Mathematics, Vol. 58, American Mathematical Society, Provi-
dence, RI (2002).

[11] C. G. Moseley, The Geometry of Sub-Riemannian Engel Manifolds, Ph.D.
thesis, University of North Carolina at Chapel Hill, 2001.

[12] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge University Press, 2000.

[13] L. S. Pontryagin, The Mathematical Theory of Optimal Processes, Inter-
science Publishers, John Wiley and Sons, New York, 1962.

[14] R. Shankar, Principles of Quantum Mechanics, Plenum Press, New York,
1980.

[15] P. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM J. Comput. vol. 26, no. 5,
1484-1509 (Oct. 1997); quant-ph/950802 V2 (Jan. 1996).

7


