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1  Executive Summary 
 
The probability of non-perforation is an important performance measure for armor 
effectiveness.  To estimate this probability in homogeneous armor, live-fire testing of an 
anticipated threat ammunition into semi-infinite armor may be conducted to record 
uncensored depths of penetration.  Knowing the actual thickness of the armor, one can 
then obtain a point estimate for the probability of non-perforation using either a binomial 
(perforate/non-perforate) or a normal model of the penetration depths.  Preferable to a 
point estimate, a lower confidence bound provides engineers with a worst-case estimate 
of the level of protection that the armor will provide.  Applying the recent concept of 
generalized pivots (Weerahandi 1993) and assuming a normal distribution for the 
penetration depths, one can obtain a formula for the lower confidence bound for the 
probability of non-perforation.  In this paper we develop this formula, and discuss the 
numerical method used to attain the solution in Mathematica®. 
 
 
Keywords: lower confidence bound, generalized pivot, non-central t distribution, 
bisection method 
 
 
2  Introduction 
 
In evaluating the protective capability of armor systems, engineers and program 
managers are interested in estimating the probability of non-perforation probabilities 
based upon live-fire data.  This paper is motivated by a hypothetical live-fire study in 
which projectiles are fired into semi-infinite targets of homogeneous armor to determine 
the depths of penetration.  Semi-infinite armor is required since rounds which perforate 
the target have their penetration measurement censored at the thickness of the target, 
resulting in incomplete information on the penetrative capability of the round and the 
protective capability of the armor.  Homogeneous armor is used so that the penetrations 
can assume a continuum of values that are modeled by a normal distribution. 
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For the following hypothetical example, suppose that fifteen projectiles are fired into 
semi-infinite homogeneous armor plates.  The ensuing (unitless) depths of penetration are 
recorded in Table 1. 
 

Table 1:  Depths of Penetration into Homogeneous Armor (no units) 
 

29.4 34.6 43.3 46.1 46.2 
46.4 47.5 50.9 52.7 52.7 
55.9 56.4 57.6 60.8 69.5 

 
Assume that the production armor is proposed to be 60 units thick.  To estimate the 
probability of non-perforation for future shots, one might simply count how many of 
these rounds had penetrations below 60 units and divide by the total number of shots.  
Using this very simplistic approach, one would arrive at non-perforation probability 
estimate of 13/15, or about 86.7%.  However, this analysis leaves unanswered questions 
from both a statistical and an engineering viewpoint:  What purpose does it serve to 
measure individual penetrations if the only matter of importance was whether or not the 
penetration exceeded 60 units?  Is 86.7% the only reasonable estimate of non-perforation 
probability?  Is it not possible for the actual probability to be 85%, or 80%, or even 75%?  
What is the smallest, or worst-case, estimate of non-perforation probability that would 
still be feasible? 
 
A more complete solution to this estimation problem would be to provide a lower 
confidence bound on the probability of non-perforation at some acceptable level of 
confidence.  It would also be preferable to use the actual penetration values in the 
determination of this interval, instead of reducing this continuous information 
(penetration depth) into a binomial response (perforation or non-perforation).  Under the 
assumption of normally distributed penetration depths, we derive in this paper the desired 
lower confidence bound and discuss the numerical method used to attain the solution. 
 
 
3  General Setup 
 
Let X represent the penetration depth of a random projectile and  denote the thickness 
of the production armor.  We will assume that X is a normally distributed random 
variable with unknown mean 

0x

µ  and unknown standard variation σ .  Using this notation, 
the probability of penetration is written as ( )0xXP < , and is known as the cumulative 
distribution function (CDF) evaluated at .  Notice that 0x
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where Z is a standard normal random variable, and ( )⋅Φ  is the standard normal CDF 
commonly tabulated in statistics texts and available in many software packages.  
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Although the problem of point estimation of ( )0xXP <  from sample data has its origins 
in statistical quality control research in the 1950’s, it was not until a paper by Owen and 
Hua (1977) that confidence interval estimators surfaced.  Specifically, Owen and Hua 
derived lower confidence limits for ( )0xXP ≥ , and described how to obtain both one-
sided and two-sided limits for ( )0xXP < .  Their paper is referenced by several other 
authors, and is the only one that offers a proof of their result.  However, Owen and Hua’s 
proof contains several errors in notation, and as a result is quite difficult to digest. 
 
The following derivation of a lower confidence bound for ( )0xXP <  utilizes a totally 
different approach.  We use the concepts of generalized pivots and generalized 
confidence intervals first described by Weerahandi (1993).  In this framework, it is 
critical to distinguish between X and x.  X refers to a random variable (usually a set of 
sufficient statistics) and x is the observed value of X.  In general, the parameter for which 
a lower confidence bound is desired will be denoted by θ , while η  will represent any 
other nuisance parameter(s) in the statistical model.  To obtain a lower confidence bound 
for θ  it is necessary to derive a generalized pivot for θ .  A generalized pivot is a 
function of X, x, θ  and η , and is written as ( )ηθ ,,; xXR .  Since R is a function of the 
random quantity X, R is also a random quantity.  By definition, the generalized pivot must 
satisfy the following two properties: 
 

Property 1:   has a distribution that is free of any unknown parameters. ( ηθ ,,; xXR )
Property 2:  The observed value of R, i.e., ( )ηθ ,,; xxRr = , is equal to θ . 

 
The percentiles of a generalized pivot for θ  are then used to obtain generalized 
confidence intervals for θ .  Since their introduction in the 1980’s, generalized pivotal 
quantities have been regarded as quite challenging to derive.  Even Weerahandi (1993) 
states “… the construction of pivotals require some intuition”.  Iyer and Patterson’s 
Substitution Method (unpublished), describes an algorithm helpful in constructing some 
generalized pivots. 
 
 
4  Derivation of the Generalized Pivot 
 
Step 1 of Iyer and Patterson’s Substitution Method requires a set of sufficient statistics 

for the sample.  In our case, this is the sample mean, ∑
=
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In Step 2, we require a same-sized set of statistics whose distributions are free of the 

unknown parameters.  These are 

n

XZ
σ

µ−
= , which follows a normal distribution with 
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mean 0 and variance 1, and ( )
2

2

1
σ
SnV −= , which is distributed as a chi-square random 

variable with  degrees of freedom.. 1−n
 
For Step 3, one solves for the unknown parameters in terms of the distribution-free 

statistics in Step 2.  This results in 
V

nS 1−
=σ  and 

nV
nZSX 1−

−=µ . 

 
In Step 4, the unknown parameters appearing in θ  are replaced by their equivalent 
expressions from Step 3.  That is,  
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Next in Step 5, the sufficient statistics are replaced by their observed values.  This yields 

the random quantity 
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In Step 6, the generalized pivot is finally obtained after the remaining random terms in 
Step 5 are replaced by their sufficient statistic-based equivalents.  Therefore, the 

generalized pivot for ⎟
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⎞
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Property 1 can be shown to hold by noting that ( )
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distribution is free of any unknown parameters. 
 
To confirm Property 2, we note that the observed value of R is 
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With Properties 1 and 2 shown to hold, ( )
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5  Lower Confidence Bound 
 
The percentiles of a generalized pivot are used to obtain the limits of a confidence 
interval, or confidence bounds.  In most cases, the complexity of the generalized pivot’s 
distribution means that these percentiles must be obtained via Monte-Carlo simulation.  
However, in estimating the probability of non-perforation, the lower confidence bound 
can be expressed in closed form and Monte-Carlo simulation is not necessary. 
 

By definition a ( )  lower confidence bound for %1001 α−
σ
µθ −

= 0x  is that value LCB for 
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 ( )RLCBP ≤=−α1  (2) 
 
is satisfied.1  Substituting the expression for R, we get 
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From Step 2 of the Substitution Method, ( )
2

2
1
σ
Sn −  and 

n

X
σ

µ−
 can be replaced by the 

previously defined distributions V and Z, which are free of unknown parameters.  This 
yields 
 

                                                 
1 It is implicit that the upper bound equals one in the probability statement of Equation 2, i.e., 

( )11 ≤≤=− RLCBPα . 
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A series of algebraic rearrangements results in 
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The expression on the right side of the inequality is the definition of a non-central t 
distribution with 1−n  degrees of freedom and non-centrality parameter ( )LCBn 1−Φ− .  
Therefore, 
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A non-central t random variable with non-centrality parameter (LCBn 1−Φ− )  is the 
mirror image of a non-central t random variable with non-centrality parameter 

(LCBn 1−Φ ) (Johnson and Kotz, 1970).  Therefore, 
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The probability expression of Equation 7 is the CDF of a non-central t random variable 
with  degrees of freedom and non-centrality parameter 1−n ( )LCBn 1−Φ  evaluated at 

n
s

xx −0 ;  i.e., 
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A lower confidence bound for ⎟
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θ 0x
 is that value of LCB, which satisfies 

Equation 12.  The solution to this equation must be obtained using numerical methods. 



  Page 7 of 15 

 
6  Bisection Method 
 
Reconsider the data in Table 1, and the task of finding a 95% lower confidence bound for  
the probability of non-perforation for 60-unit thick armor, i.e., ( )60≤XP .  These data 
should be first for normality before proceeding to apply Equation 8.   Using Lilliefors 
Test (Conover 1980).  The value of the test statistic is 0.1483, which corresponds to a P-
value of 0.49.  Therefore, the assumption of normality is not rejected and Equation 8 can 
be used. 
 
The summary statistics for this data set are 00.50=x  and 00.10=s .  Therefore Equation 
8 states that a 95% lower confidence bound for ( )60≤XP  is the solution to 
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or equivalently, we seek a zero for the function ( ) ( ) 95.15,14 −= λλ GH .  It can be 
shown that G is a monotonic decreasing function in the non-centrality parameter λ (see 
Appendix A), therefore so is H.  To find the zero, we use any of several numerical 
methods for finding roots.  The easiest is the bisection method, in which a small initial 
value, LOλ , is chosen so that ( ) 0>LOH λ ,and a large initial value, , is chosen so that HIλ
( ) 0<HIH λ . 

 
The functions  for ( ) 95.,14 −xG λ 10−=LOλ  and  are shown in Figure 1.  10=HIλ ( )λH  
is determined by the intersecton of the the function ( ) 95.,14 −xG λ  and the dotted vertical 

line 15=x .  Note that  and ( ) 010 >−H ( ) 010 <H ; so by the monotonicity of H, the 
value which satisfies  must lie between -10 and 10.  Therefore, we average or 

“bisect” these two values to obtain the next guess, 
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As seen in Figure 2, ( ) 0>MIDH λ .  Therefore the value which satisfies ( ) 0=λH  must lie 
between 0 and 10.  Therefore, the “new” LOλ  is set to 0, and we then bisect the updated 

LOλ  and HIλ  to obtain the next guess, 5
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Figure 1:  G 14,λ(x) - .95 for initial values of non-centrality parameter 
method is repeated, closing in tighter upon the correct non-centrality parameter with 
iteration.  The algorithm ceases when ( )MIDH λ  is deemed sufficiently close to zero, 
 particularly when ( ) ελ <MIDH  for some predetermined extremely small positive 
r the example data set, the algorithm converges to a non-centrality parameter of 
7869. .  The final step is to replace λ with ( )LCBn 1−Φ , and to solve for LCB: 
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Finally, we report that the 95% lower confidence bound on the probability of non-
perforation is about 67.77%. 
 
 
7  Software 
 
The bisection method for finding a lower confidence bound for the probability of non-
perforation can be easily programmed into any mathematical software package capable of 
computing non-central t CDFs.  A Mathematica ® program appears in Appendix B, for 

calculating a lower confidence bound for ⎟
⎠

⎞
⎜
⎝

⎛ −
Φ=

σ
µ

θ 0x
.  In this program the criteria 

used to stop the bisection method is not ( ) ελ <MIDH  but rather ελλ <− LOHI .  This 
has negligible effect on the final determination of λ or LCB, but does reduce the number 
of calls to the non-central t CDF and speed execution of the code. 
 
 
8  Summary 
 
Using a generalized pivot, we have derived a lower confidence bound for the probability 
that a homogeneous armor plate of specified thickness will successfully stop a specific 
type of projectile from perforation.  In the derivation of this interval estimate, we have 
assumed that the penetration depths are random and that they follow a normal distribution 
with unknown mean and variance.  Reporting this lower confidence bound gives 
engineers and program managers a sense of the minimum level of protection afforded by 
the armor package against a particular threat.   
 
The interval limit (or limits if a two-sided interval is desired) is a function of the sample 
mean and sample standard deviation of penetration depths, the number of shots fired, the 
thickness of the armor and percentiles of a non-central t distribution.  However, since the 
non-centrality parameter associated with this distribution is a function of the interval 
limit, numerical methods are required to obtain the final solution.  The Mathematica ® 
code used to perform this calculation is provided in the Appendix. 
 
Confidence bands which graphically display the entire relationship between armor width 
and bounds on the probability of non-perforation follow naturally.  These bands may be 
of help to armor designers in selecting an armor width that will provide a high degree of 
protection against specific enemy threats. 
 
The beauty of the generalized approach is that it can be used to construct a generalized 
pivot for any function of the normal parameters, µ and σ.  For example, a natural 
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extension of the work described in this paper is to derive interval estimates for the 
proportion of conformity, , using a generalized pivot.  Recent research has 
shown that the repeated sampling properties of conventional confidence intervals/bounds 
may not necessarily hold for generalized confidence intervals/bounds.  That is, some 
generalized pivots may yield generalized confidence intervals whose actual coverage 
probability is far below the nominal level of confidence.  Monte-Carlo simulation of 
proposed generalized confidence interval/bounds is strongly recommended under a 
variety of parametric conditions to estimate the actual coverage probabilities. 

( bXaP << )
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9  List of Symbols Used 
 
Scalar Values 
n  number of observations in sample data 
s  observed sample standard deviation 

0x  a specified thickness of armor 
x  observed sample mean 
α  level of significance 
σ  population standard deviation for a normally distributed random variable 
θ  parameter for which an interval estimate is constructed; may actually be a 

function of one or more parameters 
µ  population mean for a normally distributed random variable 
η  a set of one or more nuisance parameters 
 
 
Random Variables 
( )R  generalized pivot; a function of random data, observed data, parameter of interest 

and perhaps other nuisance parameters 
S  sample standard deviation of depths of penetration 
T  student’s t random variable 
V  chi-square random variable 
X  depth of penetration for a randomly selected projectile 
X  sample mean depth of penetration 
Z  a standard normal random variable, with mean zero and variance one 
 
 
Functions 
( )G  student’s t cumulative distribution function 
( )Φ  standard normal cumulative distribution function 

 
 
Miscellaneous
LCB lower confidence bound 
( )P  probability of the parenthesized expression 

Σ  summation 
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11  Appendix A 
 
 
Show that  is a monotonic decreasing function.  That is, show that if ( )⋅H 21 λλ < , then 

. ( ) ( )21 λλ HH >
 
Proof: 
 
Let n, , 0x x , s, α , , and  be fixed constants with .  Let  and Y  be 
independent random variables,  being normally distributed with mean  and variance 
1, and Y  following a chi-squared distribution with 

1λ 2λ 21 λλ < 1X

1X 1λ
1−n  degrees of freedom.  The support 

of  is the set of all real numbers; and the support of Y  is the set of all positive reals. 1X
 

Now define 
s

xx
n
nYW −
−

= 0

1
.  The support of W is either the set of all positive reals (if 

xx ≥0 ), or the set of all non-positive reals (if xx <0 ).  However, in general, we will 
denote the support of W by Θ .  
 
( WXP <1 )  can be expressed as a double integral of the joint density of  and W, 

namely, 
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The double integral of Equation A1, can be rewritten as the sum of two double integrals: 
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Each of these double integrals is positive, so by dropping the latter of the two, we obtain 
the inequality, 
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But the double integral in Equation A3, represents a probability, namely 

 which in turn equals (( 121 λλ −−<WXP )) ( )WXP <−+ 121 λλ .  So, 
 
 ( ) ( )WXPWXP <−+>< 1211 λλ . (A4) 

 
Now define ;  then  is normally distributed with mean  and 
variance 1.  Therefore,  

( 1212 λλ −+= XX ) 2X 2λ
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 ( ) ( )WXPWXP <>< 21 , (A5) 

 
Consider the standard normal random variable, Z, having mean zero and variance 1.  
Making use of the equalities  and , and the definition of W, we 
expand the above the result to obtain, 
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Rearranging the expressions inside each of the probability statements, 
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But by the definition of a non-central t random variable, 
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Each of these probabilities is the cumulative non-central t distribution function evaluated 

at 
n

s
xx −0 : 
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Next we add the constant 1−α , to both sides of the inequality: 
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Using the definition of the function ( )⋅H , we obtain the desired result. 
 
 ( ) ( )21 λλ HH > . (A11) 
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12  Appendix B 
 
 
Mathematica® Version 5.1 code for calculating a lower confidence bound for the 

probability of non-perforation, ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ
σ
µ0x .  User may supply his or her own data and 

values for alpha, x0, and epsilon. 
 
 
(* Remove warning messages that do not affect results but clutter 
output *) 
Off[General::spell]; Off[General::spell1]; 
Off[NIntegrate::slwcon]; Off[NIntegrate::ncvb]; 
 
(* Enable use of statistical tools *) 
<<Statistics`ContinuousDistributions` 
<<Statistics`NormalDistribution` 
 
(* Clear variables for use *) 
Clear[data,n,noncent,x0,a,epsilon,lononcent,hinoncent,flag,K,ndist] 
 
(* Define variables *) 
alpha=.05; x0=115; epsilon =.000001; 
 
(* Declare data *) 
data={29.4, 34.6, 43.3, 46.1, 46.2, 46.4, 47.5, 50.9, 
      52.7, 52.7, 55.9, 56.4, 57.6, 60.8, 69.5}; 
 
(* Calculate summary statistics and define K *) 
n=Length[data];  xbar=Mean[data]//N;  sigma=StandardDeviation[data]//N; 
K=(x0-xbar)/(sigma/Sqrt[n])//N; 
 
(* Initialize flag and bounds on non-centrality parameter *) 
flag=0; lononcent=xbar-10sigma//N; hinoncent=xbar+10sigma//N; 
 
(* Execute bisection method *) 
H:=CDF[NoncentralStudentTDistribution[n-1,noncent],K]+alpha-1 
While[flag==0,noncent=Mean[{lononcent,hinoncent}]; 
      If[hinoncent-lononcent<epsilon,flag=1, 
      If[H<0,hinoncent=noncent,lononcent=noncent]]] 
 
(* Print lower confidence bound for probability of non-perforation *) 
Print[TraditionalForm[StringForm["``0% LCB for P(non-perforation) = 
``", 
      100 (1-alpha),CDF[NormalDistribution[0,1],noncent/Sqrt[n]]]]] 
 


