
Using Lie Symmetries to Study 
Differential Equations

Rachelle DeCoste
Department of Mathematical Sciences

United States Military Academy
Rachelle.DeCoste@usma.edu

Louis Piscitelle
Natick Soldier Research Center

Louis.Piscitelle@us.army.mil



Introduction

We introduce the concepts of Lie symmetries and center 
manifolds. 

Both  Lie symmetries and center manifolds can be used to 
help solve differential equations.

We hope to use these mathematical ideas to aid scientists at 
the Natick Soldier Center who use differential equations in 
their research to support the Soldier in areas such as food 
(bacteria growth which affects shelf life), materials and 
protection equipment.



Lie Symmetries
Def.  A Lie symmetry (LS) is a diffeomorphism that maps 

the set of solutions of a differential equation to itself.
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An Example
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Infinitesimals
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Higher order ODEs
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Determining Equations
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An Example
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Lie algebras

The infinitesimal generators of the LS form a Lie algebra. 
The differential equation of our previous example gives rise 

to an 8-dimensional Lie algebra.
We can use the Lie algebra structure to help classify 

differential equations of particular orders.

A Lie algebra has a skew symmetric, bilinear bracket 
structure defined by:
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Classification of ODEs using Symmetry
For example, Lie classified all second order ODEs

admitting 2-parameter symmetry groups into the 
following types:
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Invariant Solutions
Def.  Solutions of a differential equation that are invariant 

under the action of the symmetry are invariant solutions.

In this case, the orbit of a point on the solution curve is the 
solution curve.
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Differential Invariants
Def.  Differential invariants are functions that are invariant 

under the (prolonged) action of the group generated by the 
infinitesimal generators.
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We can reduce an ODE to an ODE consisting entirely of 
differential invariants.



Center Manifolds

groups. 3 into )0( of seigenvalue  thedividecan  We
)(

equations aldifferenti of system aConsider 

Df
xfx =&

The eigenvalues with negative and positive real parts 
correspond to stable and unstable manifolds of the 
system.

From the eigenvalues with zero real part we can form the 
zero eigenspace.  An invariant manifold tangent to this 
space is a center manifold (CM):
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Center Manifolds cont’d
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Center Manifolds cont’d

We find a center manifold to some suitable approximation 
by using
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An Example
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Links between Lie Symmetries and 
Center Manifolds

We ask what happens to manifolds under the action of the Lie 
symmetry.

Prop. [CG] All Lie point symmetries leave invariant both the 
stable and unstable manifolds of the dynamical system.  
Also, Lie point symmetries transform any center manifold 
into a center manifold (possibly the same).

Prop. [CG] Given any center manifold of a dynamical system, 
there is, generically, some nontrivial Lie point symmetry 
leaving invariant this center manifold, and conversely any 
Lie point symmetry of the dynamical system leaves 
invariant some center manifold.



LS and CM cont’d
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Future work
Scientists at the Natick Soldier Center use the following 
system to study growth and death kinetics in bacteria 
found in sandwiches:
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There is a center manifold because when we write the 
system in standard form we see that there are both 
negative and zero real part eigenvalues and the nonlinear 
function and its derivative are zero at the origin.
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