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Agenda

• Format of sequential decision making with 
uncertainty tasks
– Partially Observable Markov Decision 

Process
• Seek and Destroy Problem
• Previous Studies

– Static Model
• Current Study

– Dynamic Model



Examples of Sequential Decision 
Making With Uncertainty

• Medical Diagnosis
• Spatial Navigation in an uncertain 

environment
• Seek & Destroy



Partially Observable Markov 
Decision Processes

• State (S)
– True state is hidden , and cannot be directly 

observed
• Action (A)

– The decision maker possesses a set of available 
actions

• Observation (O)
– Actions may result in O, and help determine the true 

state of the system 
• Transition (T)

– Execution of an action may move the system from 
one state to another



Partially Observable Markov 
Decision Processes

• Reward (R)
– All actions have costs and rewards

• These rewards can be considered as time resources, 
monetary, personnel, etc.

• Beliefs (B)
– The decision maker’s current belief about the true 

state of the system can be represented in terms of 
likelihood

– Actions modify this belief state



POMDP: Computing Expected 
Value

• Using a POMDP we can generate a policy graph for a 
Sequential Decision Making Under Uncertainty Task
– Policy Graph provides us with the optimal action 

given a belief.
• Using a POMDP we can compute the optimal 

performance or theoretical best.
– This Golden Standard provides a standard for 

comparison
– By comparing human behavior to the optimal 

Expected Reward we can get a measure of human 
efficiency

– This comparison allows the identification of the 
observer’s cognitive limitations



Seek & Destroy
• Has the same basic structure as the Tiger Problem

Table:  Structure of Seek & Destroy Task
States Possible locations of enemy

Hidden state Current position of enemy

Actions Recon, Arty, Declare “finished”

Observation Enemy Sighted, Enemy not Sighted

Transitions Enemy at specific grid -> Enemy Destroyed

Rewards Cost of UAV recon, Cost of Arty strike, time, success v. 
failure

Beliefs Hypothesis about the enemy’s current position



Seek & Destroy (Static)

• Task
– Localize and Destroy the enemy

• Conditions
– Utilize “noisy” recon to find the enemy
– Attack with imperfect weapons to destroy the 

enemy
• Standards

– Use no more than available resources to 
complete the mission



Seek & Destroy (Static)Seek & Destroy (Static)

• Seek & Destroy 
problem space
– 5x5 arena
– Send Recon or Artillery 

to 25 locations
– When enemy is 

destroyed or resources 
are depleted, declare 
done.



Seek & Destroy (Static)

• Design
– Independent Variables:

• Resources available
• Viewing Conditions:

1. Only Last Observation (no aids)
2. All Observations (memory aid)
3. Belief State (cognitive crutch for computing 

probability of true state)

– Dependent Variables:
• Average reward over time
• Likelihood of success



Seek & Destroy (Static)
Results:  Preliminary findings show increased performance in the belief vector 
condition

Graph:  Performance on  Seek & Destroy Task measured in 
efficiency



Seek & Destroy (Dynamic)

• Current Study
– Utilizes a similar problem structure to the 

previous Seek & Destroy task
• However, in this case the enemy is dynamic

• Design
– The enemy will begin above a specific point in 

the arena (anywhere in the two top rows)
– The enemy is attempting to move to a specific 

point in the arena (point 2,4)



Seek & Destroy (Dynamic)

• Design
– Independent Variables:

• Viewing Conditions: This scenario utilizes the three viewing 
conditions of the previous experiment

1. Only Last Observation
2. All Observations
3. Belief State: In this condition, the probability of movement 

as well as accurate recon are factored into display

– Dependent Variables:
• Average reward over time
• Likelihood of success



Seek & Destroy (Dynamic)



Seek & Destroy (Dynamic)

• Subjects
– 6 undergraduate and graduate students 

enrolled at the University Texas at Austin
• Goals of this research

– Generate a more realistic scenario for 
analysis

– Determine the effectiveness of the belief state 
in more realistic situations

– Analyze human problem solving in different 
scenarios



Seek & Destroy (Dynamic)

Results
• The average 

efficiency across all 
participants shows a 
similar trend to what 
we saw in the static 
case

Average Efficiency by Condition

0%

10%

20%
30%

40%

50%

Last Observation All Observation Belief State

Condition
ef

fic
ie

nc
y

Graph:  Performance on  Seek & Destroy 
Task measured in efficiency



Seek & Destroy (Dynamic)
Results

• The average reward over time also demonstrates 
the strength of the belief vector condition

Graph:  Performance on  Seek & Destroy Task measured in average reward
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Seek & Destroy (Dynamic)
Results

• The average reward over time also demonstrates the strength of the 
belief vector condition

Results by condition
• While 50% of subjects saw enhanced performance with the memory 

aid, the other 50% experienced a decline in performance.

Graph:  Performance on  Seek & Destroy Task measured in average reward
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Seek & Destroy (Dynamic)
Results by condition

• However, with the addition of the belief vector, 
all subjects saw an improvement over the initial 
condition.

Comparison Across Subjects
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Graph:  Performance on  Seek & Destroy Task measured in average reward



Seek & Destroy (Dynamic)

• Future concerns
– What is causing the two very patterns of 

performance across the conditions
• Research should aim at determining if the change 

in performance was a factor of individual strategy 
or differences in individual cognitive strengths



Future Research Questions

• Is the addition of a “Declare-incomplete”
option beneficial to the researchers 
knowledge?

• Several manipulations of the scenario 
have been considered.
– The addition of another recon device with less 

area and less noise
– The addition of a mobile recon patrol
– The addition of multiple enemies



Summary

• Use of POMDP model in Sequential 
Decision Making Under Uncertainty

• Tiger Problem
• Seek & Destroy

– Static
– Dynamic



Decision Making Under 
Uncertainty

Thank you for your attention
Are there any questions at this time
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