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Geometric Quantum Control

• Quantum control is

– a new and growing field of research;

– necessary if we are to build quantum computers.

• Geometric quantum control is

– an application of “pure” mathematics to quantum control
problems;

– the natural setting for optimal control of quantum spin
systems.

• This presentation reports a partial solution to one quantum
optimal control problem, progress towards a complete solution,
and a strategy for solving more general quantum control
problems.
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Why are quantum computation and information worth the
effort?

• P. Shor (1994) found a quantum algorithm for factoring integers
that is exponentially faster than any known classical algorithm.

• Factoring large integers is crucial to decrypting modern codes
such as RSA.

• Quantum information channels can be constructed so that any
eavesdropping is always detected.
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Examples of quantum computation / information research

• Dr. Howard Brandt, ARL Adelphi: quantum optics and
quantum communications

• Dr. Herschel Rabitz’s group at Princeton: quantum optics,
multi-level encoding of qubits

• Dr. David Cory’s group at MIT: nuclear magnetic resonance
(NMR) control, quantum error correction

• Dr. Isaac Chuang’s group at the MIT Media Lab: NMR
quantum computing (implemented Shor’s algorithm)

• Dr. Navin Khaneja at Harvard: time-optimal NMR quantum
control
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A brief overview of quantum computers

• smallest unit of data is the qubit

• qubits can be physically encoded as quantum states; for
example, spin states.

Figure 1: Spin up and spin down states
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A brief overview of quantum computers, continued

The wave vector |ψ > for a 1-qubit quantum system is a linear
combination (or superposition) of the basic “up” and “down”
vectors |0 > and |1 >:

|ψ > = α|0 > +β|1 > where

|0 > =

1

0

 ,
|1 > =

0

1

 .
By the general theory of quantum mechanics, α and β are complex
numbers so that

√
|α|2 + |β|2 = 1.
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A brief overview of quantum computers, continued

• Classical computers perform calculations via Boolean operators
such as AND, OR and NOT gates acting on bits with values 0
and 1.

• Quantum computers perform calculations via unitary operators
acting on qubits with values α|0 > +β|1 >.

• Example: the X gate

X =

0 1

1 0


X(α|0 > +β|1 >) =

0 1

1 0

α
β

 =

β
α

 .
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A brief overview of quantum computers, continued

Another example–the Hadamard gate: H =
1√
2

0 1

1 0

.

H(α|0 > +β|1 >) =
1√
2

1 1

1 −1

α
β

 =

α+β√
2

α−β√
2



= α
|0 > + |1 >√

2
+ β

|0 > − |1 >√
2
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A brief overview of quantum computers, continued

The X gate, Hadamard gate, and other quantum 1-qubit gates are
unitary operators.

• U is a unitary operator if it leaves the amplitude
√
|α|2 + |β|2

of a 1-qubit wave function unchanged: this preserves the
information encoded in the qubit.

• Equivalently, U is unitary if U∗U = I (the identity matrix).

• The group of unitary operators on 1-qubit wave functions with
determinant 1 is SU(2).

• The group of unitary operators on n-qubit systems is SU(2n).
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Decoherence

An ideal quantum computer would perform only unitary operations
on n-qubit wave functions until the result of a calculation is needed.

However, quantum systems inevitably interact with their
environment, and this interaction can corrupt the desired evolution
of the n-qubit wave function–a phenomenon called decoherence (or,
sometimes, quantum noise).

Successful implementation of a quantum computer will require ways
to minimize decoherence or mitigate its effects on the encoded data.
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Minimizing decoherence

• One method for minimizing decoherence: perform the desired
unitary operations as quickly as possible within physical limits.

• This requires time-optimal control of the quantum system.

• This presentation will focus on two time-optimal control
problems for NMR quantum systems.
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The general n-qubit optimal control problem

Let |ψ(t) >∈ C2n

be the wave vector at time t for an n-qubit
quantum system. The wave vector evolves according to the
equation

|ψ(t) >= U(t)|ψ(0) >

where |ψ(0) > is the initial wave function and the unitary operator
U(t) ∈ SU(2n) evolves according to the time-dependent
Schrödinger equation

U̇(t) = − i
~
H(t)U(t)

where U(0) = I (the identity matrix) and H(t) is the Hamiltonian
of the system at time t.
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The general n-qubit optimal control problem, continued

U̇(t) = − i
~
H(t)U(t) (1)

U(0) = I

Solution curves U : [a, b] → SU(2n) of (1) are paths in the state
space SU(2n).

• In controlled quantum systems, the Hamiltonian H is a
function of both time t and controls uj .

• Time-optimal control: choose controls uj(t) so that the
resulting curve U : [a, b] → SU(2n) reaches the desired unitary
operator UF in minimum time.

• For many problems it is possible to use a reduced state space
(e.g. a quotient of SU(2n)).
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Problem 1: Optimal Control of the Three-Spin Chain

• Three qubits: three nuclear spins in a one-dimensional array.

• Quantum control system:

[γ̇ij(t)] =


0 u1(t) 0 0

−u1(t) 0 u2(t) 0

0 −u2(t) 0 u3(t)

0 0 −u3(t) 0

 [γij(t)] (2)

where the matrices [γij(t)] are elements of the reduced state
space SO(4), and u1, u2 and u3 are the controls.

• Goal: time-optimal controls u1(t), u2(t), u3(t).
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The Three-Spin Chain, continued

Equation (2) can be rewritten as

γ̇(t) = (u1X1 + u2X2 + u3X3)γ(t), (3)

where

X1 =

2666664
0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

3777775 , X2 =

2666664
0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

3777775 , X3 =

2666664
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

3777775
By a theorem due to Chow (1939), any desired final state
γF ∈ SO(4) can be reached by a solution curve of (3) starting from
the identity.
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Time-optimal controls for the three-spin chain

We wish to find solution curves γ : [a, b] → SO(4) with γ(0) = I

that minimize the energy functional

Φ(γ) =
1
2

∫ b

a

u2
1 + u2

2 + u2
3 dt (4)

Since the solution curves of (3) are tangent to the three-plane field
D on SO(4) spanned by right-translations of {X1, X2, X3}, the
computations must use some form of constrained minimization
technique. For this calculation the Griffiths formalism was used.
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Time-optimal controls for the three-spin chain, continued

Result 1: the optimal controls are determined by the following
system of nonlinear ODEs in Lagrange multipliers λ1, . . . , λ6, called
the Euler system:

λ̇1 = λ2λ4, λ̇2 = λ3λ6 − λ1λ4, λ̇3 = −λ2λ6,

λ̇4 = λ3λ5, λ̇5= −λ3λ4 + λ1λ6, λ̇6 = −λ1λ5.
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Time-optimal controls for the three-spin chain, continued

Result 1: the optimal controls are determined by the following
system of nonlinear ODEs in Lagrange multipliers λ1, . . . , λ6, called
the Euler system:

λ̇1 = λ2λ4, λ̇2 = λ3λ6 − λ1λ4, λ̇3 = −λ2λ6,

λ̇4 = λ3λ5, λ̇5= −λ3λ4 + λ1λ6, λ̇6 = −λ1λ5.

By inspection this system has three quadratic conservation laws:

λ2
1 + λ2

2 + λ2
3 = C1,

λ2
4 + λ2

5 + λ2
6 = C2,

λ1λ3 − λ4λ6 + λ2λ5 = C3.
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Time-optimal controls for the three-spin chain, continued

Result 1: the optimal controls are determined by the following
system of nonlinear ODEs in Lagrange multipliers λ1, . . . , λ6, called
the Euler system:

λ̇1 = λ2λ4, λ̇2 = λ3λ6 − λ1λ4, λ̇3 = −λ2λ6,

λ̇4 = λ3λ5, λ̇5= −λ3λ4 + λ1λ6, λ̇6 = −λ1λ5.

By inspection this system has three quadratic conservation laws:

λ2
1 + λ2

2 + λ2
3 = C1,

λ2
4 + λ2

5 + λ2
6 = C2,

λ1λ3 − λ4λ6 + λ2λ5 = C3.

The time-optimal solutions are given by u1 = λ1, u2 = λ2, u3 = λ3.
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Time-optimal controls for the three-spin chain: next steps

• The result just presented allows complete numerical solutions
for time-optimal control of the three-spin chain.

• However, experimenters in NMR control want something more:
closed-form expressions for the controls.

• The three conserved quantities listed above allow the problem
to be reduced to finding solutions on a three-manifold. There
are geometric reasons to think there should be more conserved
quantities, arising from the symmetry of the reduced state
space SO(4).

• If closed-form solutions can be found, it would be a
breakthrough. Work on this continues.
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Problem 2: Optimal Control of More General NMR
Quantum Systems

Recall that the control system of a general n-qubit quantum system
is given by the Schrödinger equation

U̇(t) = − i
~
H(t)U(t)

where the Hamiltonian H(t) is controlled.
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Problem 2: Optimal Control of More General NMR
Quantum Systems

Recall that the control system of a general n-qubit quantum system
is given by the Schrödinger equation

U̇(t) = − i
~
H(t)U(t)

where the Hamiltonian H(t) is controlled.

The controlled Hamiltonian for an n-qubit NMR quantum system is

H(t) = Hd +
m∑

j=1

uj(t)Hj

where Hd is the drift component corresponding to internal
couplings, the uj(t) are time-varying controls, and the Hj are the rf
or control components.
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Problem 2: Optimal Control of More General NMR
Quantum Systems

H(t) = Hd +
m∑

j=1

uj(t)Hj

The system is controllable if iterated Lie brackets of
{Hd,H1, . . . ,Hm} generate the Lie algebra su(2n).

The presence of the drift term Hd means that the optimal control
problem requires a somewhat different approach, involving
Pontryagin’s Maximum Principle.
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Problem 2: Optimal Control of More General NMR
Quantum Systems

• Khaneja, Brockett and Glaser (2001): optimal controls for
general 2-qubit NMR systems

• Solution involved using the Pontryagin Maximum Principle on

the reduced state space
SU(4)

SU(2)⊗ SU(2)
.

• Solutions for n ≥ 3 qubits still not known

• Progress on n = 4 may benefit from recent results in geometric
control theory, but work is still in first stages
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Summary

• We now can use numerical methods for optimal control of the
three-spin chain quantum system (result 1)

• Work continues on finding closed-form solutions to this problem

• Exploration of the 4-qubit case is just beginning

• General methods applicable to other quantum systems, not just
NMR control

The goal: to allow more sophisticated experiments in quantum
control that will ultimately lead to construction of a practical
quantum computer.
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