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Fifteen projectiles are fired into semi-infinite homogeneous
armor plates to record the depth of penetration.
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Fifteen projectiles are fired into semi-infinite homogeneous
armor plates to record the depth of penetration.
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TASK: Find a 95% lower confidence bound (LCB) for the probability
of non-perforation if the production armor is to be 60 units thick.



Let
X = penetration depth of a random projectile

X, = plate thickness (production)

where

X~N( ,0'2)



P(non — perfomtion) = P(X < xo)



P(non — perfomtion) = P(X < xo)




P(non — perfomtion) = P(X < xo)




Xo —H
O
problem. See Patel & Read (1996), Hahn &
Meeker (1990), Odeh and Owen (1980), or Owen

and Hua (1977) for the solution.

Interval estimation of (I)( ) 1S not a new

But we will look at it from a completely different
perspective: generalized pivots and generalized

confidence intervals (Weerahandi, 1993).



Notation

X =Random variable, often a set of
sufficient statistics

x = Observed value of X

6 = Unknown parameter of interest

n = Nuisance parameter(s)



A generalized pivot is written as R(X; x, 6, ).
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A generalized pivot is written as R(X; x, 6, ).

A generalized pivot for 8 must satisfy the following:

Property 1: R(X; x, 6, n) has a distribution that 1s
free of any unknown parameters.

Property 2: The observed value, » = R(x; x, 0, n),
equals 6.
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A generalized pivot is written as R(X; x, 6, ).

A generalized pivot for 8 must satisfy the following:

Property 1: R(X; x, 6, n) has a distribution that 1s
free of any unknown parameters.

Property 2: The observed value, » = R(x; x, 0, n),
equals 6.

* The percentiles of a generalized pivot for 6 yield *
generalized confidence limits/bounds for 6.
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In his seminal 1993 paper, Sam Weerahandi (the
Godfather of Generalized Inference) even wrote :

“The problem of finding an appropriate pivotal quantity
is a nontrivial task.”

“... the construction of pivotals requires some intuition.”
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Finding a GCI for @ :CD(XO _ﬂ] using lyer
O

and Patterson’s Substitution Method

Step 1: Find a set of independent, sufficient statistics for the sample.

n

¥=-13x 52 =3 (x, - X

n i=1 n_l i=1
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O
and Patterson’s Substitution Method

Finding a GCI for @ :CD(XO _ﬂ] using lyer

Step 1: Find a set of independent, sufficient statistics for the sample.

n

¥=-13x 52 =3 (x, - X

n i=1 n_l i=1

Step 2: From these, find a same-sized set of statistics whose distributions
are free of the unknown parameters.

Z

XM N0, 1) N Ul Y S

7 2 ~ Zn—l
\/; O
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Step 3: Solve for the unknown parameters in terms of the statistics in Step 2.
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Step 3: Solve for the unknown parameters in terms of the statistics in Step 2.

Step 4: Substitute the expressions for the unknown parameters in Step 3 into 6.

QZ(D(xO_luj
O
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Step 3: Solve for the unknown parameters in terms of the statistics in Step 2.

Step 4: Substitute the expressions for the unknown parameters in Step 3 into 6.

xo—(X—ZS n—l]
0:@(’%_“):@ v
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Step 3: Solve for the unknown parameters in terms of the statistics in Step 2.

Step 4: Substitute the expressions for the unknown parameters in Step 3 into 6.

xo—(X—ZS n—l) _
0:@(’%_“):@ A PN Pl S
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Step 5: Substitute the (random) sufficient statistics with their observed values.

20



Step 5: Substitute the (random) sufficient statistics with their observed values.
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Step 5: Substitute the (random) sufficient statistics with their observed values.

Step 6: Substitute the remaining random terms with their sufficient-statistic
based equivalent. Finally, this is the generalized pivot for 6 !!!

Xy —X (n—l)S2 1 X—u

S P o

R=0
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In most cases, percentiles of the generalized pivot
must be obtained via Monte-Carlo simulation.
However, occasionally they may be expressed in
closed form.

The latter can be shown to be the case for

R—® Xy —X \/(n—l)Sz 1 X—u

o g
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A (1-0)100% lower confidence bound for 6 = ®
value “LCB” for which 1—« = P(LCB < R)

Xo —H
O

j 1s that
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A (1-0)100% lower confidence bound for 6 = ® Y H j 1s that
value “LCB” for which 1—« = P(LCB < R)

l-aa=P

LCB<OD

X0

o)

X \/(n—l)Sz 1 )?—,u
svin—1

o
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A (1-0)100% lower confidence bound for 6 = ®
value “LCB” for which 1—« = P(LCB < R)

Xo —H

o)

] 1s that

LCB<LO®
S

Xg—X 4' _1)
Nn—1 1\
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A (1-a)100% lower confidence bound for 8 = ® Yo~ H

value “LCB” for which 1—

o)

a=P(LCB<R)

] 1s that

l-aa=P| LCB<O®
S

= PECDI (LCB)<

Xg—X 4' 1)
Jn—1 1\

_ <
5X D0
svn—1 n
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l—a = P((D_l (LCB)<

28



Ty _ Z —n®7'(LCB)
%\/; Vn—l

(rearrange terms)
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P

<T

Jm "

-
n—1
1,—/n®7(LCB)

(definition of non-central t
distribution)
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=P/ T o (LcB) =

xO_x

b

(t,.1, 1s mirror image of t_, ;)
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l-a=pP Tn—l,\/;CD_l (LCB) s

X

bar
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l-aa=P| T

- Gn—l,JZ@‘l (LcB)| g

n-1,n®" (LCB) s %
Jn

Xg—X

A .
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l—q=P| T to— X

n—1,n® " (LCB) %
Jn

Xg—X

2 .

- Gn—l, Vo (LCB)| g

%

The CDF of a non-central t distribution with n-1 degrees of freedom and non-
. Xg—X
centrality parameter A = \/; O (LCB ), evaluated at % . This is the same

Jn

result “proven” by Owen and Hua!
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l—q=P| T to— X

n—1,n® " (LCB) < %
Jn

Xg—X

- Gn—l, Vo (LCB)| g ‘
Jn
%

The CDF of a non-central t distribution with n-1 degrees of freedom and non-
. Xg—X
centrality parameter A = \/; O (LCB ), evaluated at % . This is the same

Jn

result “proven” by Owen and Hua!

The non-centrality parameter, A, must be solved using

numerical methods, e.g., the bisection method.
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Fifteen projectiles are fired into semi-infinite homogeneous
armor plates to record the depth of penetration.

TASK: Find a 95% lower confidence bound (LCB) for the probability
of non-perforation if the production armor is to be 60 units thick.
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Fifteen projectiles are fired into semi-infinite homogeneous
armor plates to record the depth of penetration.

TASK: Find a 95% lower confidence bound (LCB) for the probability
of non-perforation if the production armor is to be 60 units thick.
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l-a= Gnlx/_CD_lLCB

/f
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l-a= Gnlx/_CD_lLCB %
\/_

60-50

14 V1507 (LCB) 1/

(substitute known values)
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l-a= GnI\/_CD_lLCB %
\/_

60-50

14 V1507 (LCB) 1/

95=G, i(\/ﬁ )

(reduce expressions)
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I-a= Gnlx/_CD_lLCB %
\/_

60-50

14 V1507 (LCB) 1/

95=G, Z(\/E )

0= GIM(\/E)—.%
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We want GIM(\/E)—.% =0!
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(11 2
The “old” A;;p, nOW
becomes the “new” A, .
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(11 2
The “old” A;;p, nOW
becomes the “new” A, .

Ao+t Aur

Take A;,;p = 5

=0
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(11 2
The “old” A;;p, nOW
becomes the “new” A, .

+ Ay
2
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Gy, (V15)-95<0
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(11 2
The “old” A;;p, nOW
becomes the “new” Ay,
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This “bisection method”
continues until we
converge upon a
solution....
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This “bisection method”
continues until we
converge upon a
solution....

53



A =1.7869
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A =1.7869

V1507 (LCB)=1.7869

(substitute non-centrality
parameter)
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A =1.7869

J1507(LCB)=1.7869

LCB = d(1.7869/ 415

(isolate unknown)
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A =1.7869

J1507(LCB)=1.7869

LCB = d(1.7869/ 415

LCB =.6777

(FINAL ANSWER)
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Some concluding remarks ...
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The beauty of this theory is that a generalized confidence interval can be

constructed for any function of the normal parameters.

Ex. 1) Normal second moment (Weerahandi):

0=E(X?)=u’+0°

Ex. 2) Interval estimation for the proportion of conformity (Iyer and Patterson):

H:P(a<X<b):CD(b_—ﬂj—CD(a_ﬂj

o) O
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CAVEAT EMPTOR!

-- The repeated sampling properties of conventional confidence
intervals/bounds may not necessarily hold for generalized
confidence intervals/bounds.

-- Monte-Carlo simulation of proposed generalized confidence
intervals/bounds is strongly recommended under a variety of
parametric conditions to estimate the actual coverage
probabilities.
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Questions?
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