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ABSTRACT

We calculate Lie symmetries and a center manifold for a set of nonlinear differential
equations that model the growth-death kinetics of Staphylococcus aureus in foods. This
is of interest to the food scientists at the US Army Natick Soldier Research Center. The
goal of our study is to contribute to the results on the behavior of the system derived
from numerical analysis. Lie symmetries can be a useful tool in the study of the behavior
of a system that is not easily solved. The existence of a center manifold and the study
of solutions restricted to it can provide insight into the overall behavior of the system.
We link these two concepts by focusing in particular on the symmetries inherited by a
center manifold.

1. Introduction

This article briefly introduces two important concepts in the study of differential
equations and dynamical systems. We introduce the notion of a Lie symmetry, first
on a single differential equation and then extend the idea to a system of first order
differential equations. Symmetry methods were initially developed by Lie to aid in
the classification of differential equations, but became more useful as they gave rise to
methods of solving such equations. In a previous paper [DP] we focused on the different
applications of Lie symmetries. Here we are more interested in finding the link between
Lie symmetry and dynamical systems methods of studying differential equations. In our
consideration of dynamical systems, we focus on the presence of invariant manifolds,
and in particular, ask how Lie symmetries act on the invariant manifolds of a system.
We briefly discuss results from the literature on the action of Lie symmetries on stable,
unstable and center manifolds. After the introduction of Lie symmetries and dynamical
systems in general, we include an application of these concepts to a system of differential
equations arising in the work of food scientists at the Natick Soldier Research Center
(SRC). These food scientists developed a system of equations to describe the life cycle
of the bacteria Staphylococcus aureus as it occurs in medium moisture bread. Our goal
in our consideration of these equations is to confirm results achieved through numerical



analysis by using symmetry and dynamical systems methods. We present our results
and comment on the work that remains to be done on this project.

2. Lie Symmetries

Lie symmetries are diffeomorphisms that map the set of solutions of a differential
equation to itself. These symmetries have several different uses in the study of differential
equations. They can be used to write a system in terms of its canonical coordinates.
Doing so may allow a researcher to write the system equivalently as a system of smaller
order, possibly as a system that is directly solvable. Additionally, by writing systems in
canonical coordinates, it may be possible to classify different systems as having the same
structure or the same Lie symmetries, thus connecting seemingly unrelated systems of
equations. These are interesting uses of Lie symmetries, ones we will consider in our
continuing study of the Lie symmetries of differential equations. However, in this paper
we discuss only how the Lie symmetries act on manifolds arising through dynamical
systems theory. We introduce center manifolds below and state results on the invariance
of these structures under Lie symmetries. Initially we present a brief introduction to Lie
symmetries. The reader is referred to Hydon [H] for a more thorough treatment with
examples.

2.1. Lie symmetries of ODEs. We begin our brief introduction to Lie symmetries by
considering a diffeomorphism in the plane given by Γε : (x, y) → (x̂, ŷ), with (x̂, ŷ) =
(x̂(x, y; ε), ŷ(x, y; ε)). The map Γε is actually an infinite family of maps with parameter
ε. For the remainder of the paper we use the notation Γ to mean Γε. We define the

infinitesimals of this map, ξ and η, to be ξ = ξ(x, y) =
dx̂

dε

∣∣∣∣
ε=0

and η = η(x, y) =
dŷ

dε

∣∣∣∣
ε=0

.

If Γ is a Lie symmetry of a differential equation, (ξ(x, y), η(x, y)) is the tangent vector
to the orbit of the points under the Lie symmetry at the point (x, y) on a solution curve
of the differential equation. The operator X = ξ∂x + η∂y is called the infinitesimal
generator of the Lie symmetry given by (x̂, ŷ). To find a diffeomorphism Γ that is Lie
symmetry for a given differential equation, we calculate the infinitesimals and then use
the definitions for ξ and η to find x̂ and ŷ, integrating with respect to the parameter ε.
What follows is the method of finding the infinitesimal generators.

We define the Lie symmetries of any ordinary differential equation (ODE)

(1) y(n) = ω(x, y, y′, . . . , y(n−1)),

with ω smooth, by extending a diffeomorphism Γ : (x, y) → (x̂, ŷ) to the map Γ :

(x, y, y′, . . . , y(n)) → (x̂, ŷ, ŷ′, . . . , ŷ(n)). Define the ŷ(k) to be ŷ(k) = Dxŷ(k−1)

Dxx̂
using the

total derivativeDx = ∂x+y
′∂y+y

′′∂y′+· · · . Any such map Γ will be a Lie symmetry of the
differential equation (1) if it satisfies the equation, namely if ŷ(n) = ω(x̂, ŷ, ŷ′, . . . , ŷ(n−1)).

The functions ξ and η will be infinitesimals of the ODE (1) if they satisfy the linearized
symmetry condition given by

(2) η(n) = ξωx + ηωy + η(1)ωy′ + · · ·+ η(n−1)ωy(n−1)

where the η(k) are defined from the ŷ(k). These prolonged infinitesimals are calculated
recursively by

η(k)(x, y, y′, . . . , y(k)) = Dxη
(k−1) − y(k)Dxξ.



We list the first few:

η(1) = ηx + (ηy − ξx)y
′ − ξyy

′2;

η(2) = ηxx + (2ηxy − ξxx)y
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3

+{ηy − 2ξx − 3ξyy
′}y′′;

η(3) = ηxxx + (3ηxxy − ξxxx)y
′ + 3(ηxyy − ξxxy)y

′2 + (ηyyy − 3ξxyy)y
′3

−ξyyyy
′4 + 3{ηxy − ξxx + (ηyy − 3ξxy)y

′ − 2ξyyy
′2}y′′

−3ξyy
′′2 + {ηy − 3ξx − 4ξyy

′}y′′′.
We can use the prolongation of the infinitesimal generator to rewrite the linearized

symmetry condition. We find X(n) = ξ∂x +η∂y +η(1)∂y′ +η(2)∂y(2) + · · ·+η(n)∂y(n) . Then
(2) is equivalent to

(3) X(n)
(
y(n) − ω(x, y, y′, . . . , y(n−1))

)
= 0.

Thus if we can find the infinitesimals ξ and η such that equation (3) holds, we can
find a symmetry Γ : (x, y, y′, . . . , y(n)) 7→ (x̂, ŷ, ŷ′, . . . , ŷ(n)) of the differential equation
(1). The condition (3) reduces to a system of PDE’s in the partial derivatives of ξ and
η which must be simultaneously solved to find the generators.

2.2. Lie symmetries of a system of ODEs. Since we can write any higher order
ODE as a system of first order ODEs, it makes sense that we should be able to calculate
Lie symmetries of a system of first order ODEs in an analogous way. We outline this
below; this is the case in which we are interested because of the systems of equations
arising in the work of scientists at the Natick SRC.

Given a system of first order ODEs

(4) y′k = ωk(t, y1, y2, . . . , yn), k = 1, . . . , n

we calculate the Lie symmetries that transform the variables t, y1, . . . , yn by finding the
infinitesimal generators

(5) X = ξ∂t + η1∂y1 + η2∂y2 + · · ·+ ηn∂yn

where ξ = ξ(t, y1, y2, . . . , yn) and ηk = ηk(t, y1, y2, . . . , yn) for all k. As in the case of a
single ODE, the infinitesimals are derivatives of the images of the variables of the system
with respect to the parameter of the Lie symmetry map. An infinitesimal generator must
satisfy the linearized symmetry condition

(6) X(1)(y′k − ωk(t, y1, y2, . . . , yn)) = 0, k = 1, . . . , n

when (4) holds. In this case the prolongation of X is as follows:

(7) X(1) = X + η
(1)
1 ∂y′1

+ η
(1)
2 ∂y′2

+ · · ·+ η(1)
n ∂y′n

where η
(1)
k is defined to be η

(1)
k = Dtηk − y′kDtξ. The total derivative Dt is Dt =

∂t + y′1∂y1 + · · ·+ y′n∂yn . Thus we have the following:

(8) η
(1)
k = ∂tηk+y′1∂y1ηk+y′2∂y2ηk+· · ·+y′n∂ynηk−y′k(∂tξ+y

′
1∂y1ξ+y

′
2∂y2ξ+· · ·+y′n∂ynξ).

A system of first order ODEs has an infinite number of symmetries. We find the
symmetries as in the case of higher order ODEs above, by finding the infinitesimals ξ, ηk

that satisfy the linearized symmetry condition (6). Calculating symmetries by hand by
finding their infinitesimal generators can be quite tedious since the symmetry condition



again reduces to a system of PDE’s in the partial derivatives of ξ and ηk. Thus in our
work below we found symmetries with the aid of the “Intro to Symmetry” package in
Mathematica and a script included in [C].

3. Center Manifolds

By reducing a dynamical system to its lower dimensional center manifold, one can de-
termine properties of the behavior of the whole system from that of the center manifold.
In our study, the center manifold is the most important of the three possible invariant
manifolds of a system. The stable, unstable and center manifolds are invariant, meaning
that a solution curve starting on one of the three manifolds lies entirely on the same
manifold.

To determine the three invariant manifolds, one takes a system of ODEs and writes
it in normal form as follows:

ẋ = Ax+ g(x, y)(9)

ẏ = By + j(x, y)

where A has eigenvalues with zero real parts, B has eigenvalues with nonzero real parts
and the functions g(x, y) and j(x, y) are C2. The stable and unstable manifolds are
each unique, while a center manifold is not necessarily unique. The stable, unstable and
center manifolds correspond to the eigenspaces of the eigenvalues with negative, positive
and zero real parts respectively. All solutions of the system that decay toward the origin
comprise the stable manifold; the unstable manifold consists of all solutions that grow
away from the origin. A center manifold consists of solutions which do not exponentially
decay toward or expand from the origin. If a system of differential equations can be
written as above with at least one eigenvalue of the linear term with zero real part, then
we are guaranteed the existence of a center manifold. See [Ca] or [GH] for more details,
examples and a proof on the existence of center manifolds. The center manifold is an
invariant manifold with y = h(x), h smooth and h(0) = Dh(0) = 0. We approximate
h(x) by finding a function, to a particular order, that satisfies

(10) (Mh)(x) = Dh(x)[Ax+ g(x, h(x))]−Bh(x)− j(x, h(x)) = 0.

4. Lie Symmetries acting on Center Manifolds

Cicogna and Gaeta (see [CG99] for a more thorough treatment) have in recent years
provided a link between the study of Lie symmetries and dynamical systems, and in
particular, center manifolds. They have proven that the unstable and stable manifolds
of a dynamical system will remain invariant under the action of any Lie symmetry. In
this context we use the term invariant to mean that a manifold is mapped to itself by the
Lie symmetry. Due to the non-uniqueness of center manifolds however, a center manifold
may be mapped to another center manifold by a Lie symmetry. Another of their results
states that for every center manifold there exists a Lie symmetry such that the center
manifold is left invariant by that Lie symmetry. They have also shown that for every
Lie symmetry there exists a center manifold that is left invariant by that symmetry. We
make use of the following result that tells us precisely when a center manifold h(x) is
invariant under a given symmetry X = φ∂x + ψ∂y.



Lemma 4.1 (Lemma 4 of [CG99] Chapter 7). A center manifold h(x) is invariant under
a Lie symmetry X = φ∂x + ψ∂y if and only if

ψ(x, h(x)) = (∂x(h(x))) · φ(x, h(x)).

5. An Army application: the growth-death kinetics of Staphylococcus
aureus

5.1. The origin of the problem. The system of equations we consider arose from the
work of food scientists at the Natick SRC. These scientists were studying the growth
of Staphylococcus aureus (S. aureus) that could occur in prepackaged sandwiches that
the Army manufactures for its soldiers in the field. The goal of the scientists was to
determine an accurate model for the growth of the bacteria. The food scientists use
this model to predict the shelf-life of sandwiches so that food that is safe to eat is
not prematurely discarded, while at the same any soldier who consumes a sandwich
can be assured of its safety. The scientists found that all existing models for growth
of bacteria in food considered only the growth or the death phase of the bacterial life
cycle. They determined that this was not a sufficient way to model the bacteria; thus
they constructed a model that included both the growth and death of the S. aureus
bacteria cells. To find an accurate model, they collected data on bread crumbs with
varying conditions of water activity, pH and temperature. The model they determined
as the best fit to the data describes four phases in the life cycle of S. aureus. The model
describes the bacteria cells passing through the stages of metabolizing (M), multiplying
(M∗), and sensitization to death (M∗∗), and dead (D). Additionally, the scientists at
the SRC hypothesized that there was an antagonist (A) present that would interact
with the cells. With this assumption, the scientists were better able to find a model to
fit their collected data. For a more thorough presentation of the model, the reader is
referred to [RTDFK] and [TFRKD].

The first step in the process describes cells moving from lag phase to growth phase
(M → M∗). In the next step, cells multiply via binary division and then the newly
multiplied cells interact with an antagonist (M∗ → 2M∗ +A). The last two steps repre-
sent two different pathways to death: the first with cells interacting with an antagonist,
then passing to sensitization before death (A + M∗ → M∗∗ → D) and lastly the cells
experiencing natural death (M∗ → D).

These four phases are represented mathematically by the following system of ordinary
differential equations with each phase having a rate constant (ki) associated to it.

Ṁ = −k1M(11)

Ṁ∗ = k1M +M∗(G− εA)(12)

Ȧ = M∗(k2 − εA)(13)

Ḋ = M∗(k4 + εA)(14)

The constant G = k2 − k4 is the net natural growth rate and ε = 10−9k3 allows for a
reparametrization. It is assumed that all the rate constants have non-negative values.
The initial conditions at time zero are M(0) = I, the inoculum level I ≈ 103 − 104, and
M∗(0) = A(0) = D(0) = 0.



5.2. A simplification. As in the paper [DP], we see that the fourth equation is uncou-
pled since the variableD is not present in any of the first three equations and Ḋ can be de-
termined fromM∗ and A. Therefore to investigate the dynamics of the system, we can re-
duce to a system of three equations. Renaming the variables (y1 = M, y2 = M∗, y3 = A)
we find the following system equivalent to equations (11)-(14): y′1

y′2
y′3

 =

 −k1 0 0
k1 G 0
0 k2 0

  y1

y2

y3

 +

 0
−εy2y3

−εy2y3

(15)

In order to calculate a center manifold, we must write the system in normal form; we
do this now. First note that the eigenvalues of the linear terms of the system are −k1,
G, and zero. To normalize the system we need to consider 2 cases: G 6= 0 and G = 0.
First we consider G 6= 0 and let the matrix T consist of eigenvectors of the associated
eigenvalues. Then we perform a change of variable operation by solving the following
for the new variables u, v, w: y1

y2

y3

 = T

 u
v
w

 =

 0 0 G+ k1

0 1 −k1

1 k2

G
k2

  u
v
w

 .(16)

After solving for u, v, w and taking derivatives we arrive at the normalized system:

u′ = 0 · u+

(
1− k2

G

)
f(u, v, w)(17) (

v′

w′

)
=

(
G 0
0 −k1

) (
v
w

)
+

(
f(u, v, w)

0

)
(18)

where f(u, v, w) = − ε
G
(v − k1w)(k2v + G(u + k2w)). Since f(u, v, w) and its partials

with respect to u, v, and w are all zero at the origin (u, v, w) = (0, 0, 0), the system is
in normal form.

Now considering the case G = 0, rewrite the simplified system as y′1
y′2
y′3

 =

 −k1 0 0
k1 0 0
0 k2 0

  y1

y2

y3

 +

 0
−εy2y3

−εy2y3

(19)

Note that in this case there are two zero eigenvalues and one negative eigenvalue for the
matrix of the linear term. Since zero is a repeated eigenvalue, we use the generalized
eigenvectors to find the normalization of this system. The generalized eigenvectors are
(0, 0, 1), (0, 1, 0), and (1,−1, k2

k1
). To transform the system, again let T be the matrix

consisting of these eigenvectors and let y1

y2

y3

 = T

 u
v
w

 =

 0 0 1
0 1 −1
1 0 k2

k1

  u
v
w

 .(20)

As above, this allows us to write the system in normal form:(
u′

v′

)
=

(
0 k2

0 0

) (
u
v

)
+

(
g(u, v, w)
g(u, v, w)

)
(21)

w′ = −k1w + 0(22)



where g(u, v, w) = −ε(v−w)(u+ k2

k1
w). Since g(u, v, w) is zero at the origin and all of its

first partial derivatives are also zero at the origin, again the system is in normal form.
For the remainder of this paper, we will consider the growth-death model using the

variables u, v, w.

5.3. Lie Symmetries of the growth-death model. We calculate the Lie symmetries
of the system described by (17) and (18) for the case G 6= 0 noting that the sign of G
does not affect the results. Then we use (21) and (22) for the case G = 0. As noted
previously, there are infinitely many symmetries of this system because it is a system of
first order ODEs. Computing power limits the number and order of Lie symmetries we
can calculate. In both cases, we list symmetries up to order three in the variables u, v, w.
We write the infinitesimal generators X = ξ∂t +η1∂u +η2∂v +η3∂w as X = {ξ, η1, η2, η3}:
Case G 6= 0:

X1 = {1, 0, 0, 0}

X2 = {j(u, v, w),
1

G
(G− k2)j(u, v, w)f(u, v, w), j(u, v, w)(Gv + f(u, v, w)),−k1wj(u, v, w)}

X3 = {l(u, v, w),
1

G
(G− k2)l(u, v, w)f(u, v, w), l(u, v, w)(Gv + f(u, v, w)),−k1wl(u, v, w)}

X4 = {0, 1

Gk1

(G− k2)f(u, v, w),
1

k1

(Gv + f(u, v, w)),−w}

X5 = { t
k1

,
t

Gk1

(G− k2)f(u, v, w),
t

k1

(Gv + f(u, v, w)),−tw}

X6 = {m(u, v, w),
1

G
(G− k2)m(u, v, w)f(u, v, w),m(u, v, w)(Gv + f(u, v, w)),−k1wm(u, v, w)

where f(u, v, w) is as above, j(u, v, w) = v − k1w, l(u, v, w) = u + k2

G
v + k2w and

m(u, v, w) = −1
ε
(G+ k1)w.

Case G = 0:

X1 = {1, 0, 0, 0}

X2 = {v − w,
1

k1

(v − w)n(u, v, w),−ε(v − w)p(u, v, w),−k1(v − w)w}

X3 = {u+
k2

k1

w,
1

k1

(u+
k2

k1

w)n(u, v, w),−ε(u+
k2

k1

w)p(u, v, w),−k1(u+
k2

k1

w)w}

X4 = {0, −1

εk1

n(u, v, w), p(u, v, w),
k1

ε
w}

X5 = {−t
ε
,
−1

εk1

tn(u, v, w), tp(u, v, w),
k1

ε
tw}

X6 = {−1

ε
w,
−1

εk1

wn(u, v, w), wp(u, v, w),
k1

ε
w2}

where n(u, v, w) = εk2w(−v+w)+k1(k2v+εu(−v+w)) and p(u, v, w) = (v−w)(u+ k2

k1
w).

5.4. Center manifolds computations on the growth-death model. Considering
the model given in equations (17) and (18), it can be seen immediately that the system
has a one-dimensional center manifold in the case G 6= 0. For G > 0, there are also
a one-dimensional stable manifold and a one-dimensional unstable manifold. In the



case G < 0, in addition to the center manifold, there is only a two-dimensional stable
manifold.

For the case G 6= 0, the sign of G does not change the outcome of the center manifold
calculation. Here we calculate a center manifold h : V → R2, with V ⊂ R a neighborhood
of the origin. Thus let h(x) = (h1(x), h2(x)) = (ax2 + bx3 + O(x4), cx2 + dx3 + O(x4)).
Then f(x, h1(x), h2(x)) = ε(−a+ k1c)x

3 +O(x4) resulting in

(Mh)(x) =

(
−Gax2 + (−Gb− εa+ k1εc)x

3 +O(x4)
k1cx

2 + k1dx
3 +O(x4)

)
.

Solving for (Mh)(x) = 0 as in (10), we find h1(x) = h2(x) = O(x4). Thus up to third
order, h1(x) = h2(x) = 0, and a center manifold is approximately the u−axis. The
variable u corresponds to the variable A of the original system.

When G = 0, from (21) and (22) it can be seen immediately that the system has a
two-dimensional center manifold, corresponding to zero as a double eigenvalue, and a
one dimensional stable manifold since the other eigenvalue is −k1. Here h : V → R,
V ⊂ R2, a neighborhood of the origin. We let h(x) = h(x1, x2) = ax2

1 + bx2
2 + cx1x2 +

dx3
1 + ex3

2 + fx2
1x2 + jx1x

2
2. Then we calculate

(Mh)(x) =
(
hx1(x1, x2), hx2(x1, x2)

)
·
(
k2x2 + g(x1, x2, h(x1, x2))

g(x1, x2, h(x1, x2))

)
+ k1h(x1, x2)

= (2ak2 + ck1)x1x2 + (ak1)x
2
1 + (ck2 + bk1)x

2
2 + (dk1)x

3
1 + (jk2 + ek1)x

3
2

+(3dk2 − 2aε− cε+ fk1)x
2
1x2 + (2fk2 − cε− 2bε+ jk1)x1x

2
2

resulting in h(x1, x2) = O(x4), thus h(x1, x2) = 0 up to order three. Hence in this case
a center manifold is the uv−plane. This corresponds to the M∗A−plane in the original
variables.

5.5. Connections. Regardless of the value of G, the behavior of the entire system can
be observed by considering a center manifold. Here is where comparisons can be made
with work done by the food scientists at the SRC. The results obtained by the scientists
are based on numerical methods. We can confirm their results through our consideration
of the center manifolds we found. In the case G 6= 0, they considered a particular set
of constant values: k1 = 1, k2 = 4, k3 = 100, and k4 = 2 (thus G > 0). The numerical
methods show the variable A growing to a certain upper bound, while M and M∗ both
decay to zero. This agrees with our assessment of the behavior of the system based
on the fact that the center manifold is the A = u−axis. The behavior of the system
is depicted in Figure 1. In this figure, the trajectory either approaches the u−axis or
grows from it, depending on whether the initial values for v are positive or negative.
In the food problem, all values will be nonnegative, thus reflecting the decay to the
u−axis. Additionally, we can represent the case for G < 0, as in Figure 2. In this case,
all trajectories are attracted to the u−axis, regardless of their initial points. For the
case G = 0, the behavior of the system was investigated by the scientists for various
values of ε and k1. In all cases they found A to grow, either with or without bound.
The variable M∗ exhibits different types of behavior: growing with or without bound or
decaying to zero. Lastly, M goes to zero, agreeing with our finding of the AM∗−plane
being the center manifold.

In both cases for G above, the center manifolds remain invariant under all known
Lie symmetries according to Lemma 4.1. This straightforward calculation is included



Figure 1. Trajectories and the center manifold for G > 0 with parameter
values k1 = 1, k2 = 4, k3 = 100 and k4 = 2.

Figure 2. Trajectories and the center manifold for G < 0 with parameter
values k1 = 1, k2 = 2, k3 = 100 and k4 = 4.

in [DP2]. Thus the Lie symmetries cannot provide us with further information about
any additional center manifolds. It may be that the ones we found are unique. We
would like to say more about how the Lie symmetries act on these manifolds: where do
they map certain trajectories on the center manifold, are there any solutions that are
invariant under action by the symmetry? These are questions that remain unanswered
at this time.

6. Future Work

Some work remains to be done on the analysis of the model of Staphylococcus aureus
using Lie symmetry and dynamical systems methods. So far, we have found no way
to compute the actual Lie symmetries from the infinitesimal generators. This is a dif-
ficult problem, actually equivalent to finding the solution of the original equations. We
have consulted with Cicogna and Gaeta on this problem and will continue to consider
techniques such as exponentiation of the infinitesimal generators in the hopes that we
may find an approximation of some of the symmetries. Additionally, there are systems



of equations arising in the research of other scientists at the Natick SRC, such as the
equations describing tear propagation in the material used to construct parachutes. We
hope to consider the center manifold and symmetry structures of additional systems in
future work.
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