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1 Executive Summary 
 

 Ballistic shock, the strong vibrations that propagate through a vehicle structure after a 
ballistic impact, can damage electronic components that are mounted on various interior 
locations of the vehicle.  To protect onboard critical electronic components from ballistic 
shock damage, predicted shock response spectra (SRS) are used as design guidelines in 
the selection of shock isolation devices.  Current technology to predict shock response 
intensity at component mounting locations include Finite Element Analysis and 
Statistical Energy Analysis, along with various other modeling approaches.  The Army 
Research Laboratory is implementing a process to determine component damage 
probability based on a numerical modal superposition method.  This process allows 
detailed modeling of an entire vehicle (including instrumentation racks) but requires 
months of effort to perform skillful FEA modeling.  Such an expenditure is acceptable 
only for selected high-value vehicles, and is impractical for analysis of many vehicles.  
Therefore it is desirable to investigate alternative shock analysis methods that are simple 
and general (i.e., independent of specific vehicle configurations).  Although such 
methods could entail reduced accuracy, for some situations they would eliminate the need 
for time-consuming finite element modeling, and could provide analyses useful with a 
variety of vehicles.  As such, the methods could be used for “screening” for rapid 
identification of potential shock-damage issues.  If necessary, further detailed analysis 
could be accomplished subsequently. 
 
 When an armored vehicle is subjected to a non-perforating large-caliber munitions 
impact or blast, direct-mounted components near the impact location will always risk the 

 1



highest damage potential.  Live-fire ballistic tests and laboratory experiments as well as 
numerical modeling have proven this observation.  The research presented in this paper 
develops a constant- and lumped-parameter linear matrix model of a homogeneous, 
rectangular plate subject to transverse ballistic shock, for two classes of boundary 
conditions: (1) all edges in simple support, and (2) edges alternating between simple and 
clamped (fixed) support as one proceeds around the perimeter.  Damping is included in 
Rayleigh and modal forms.  The matrix models are provided in a form suitable for eigen-
analysis intended to yield kinematic responses for SRS determination.  The enabled 
“same-plate” shock analysis, while not encompassing an entire military vehicle, would 
treat the most severe cases of shock response, for components mounted directly on the 
impacted plate. 
   
 
2 Introduction 
   
 Military equipment must be designed to operate under a variety of hostile 
environmental conditions.  Mechanical shocks, such as blast loads or projectile impacts 
on military platforms, often place debilitating demands on critical electronic and other 
military subsystems.   These component failures can in turn disable the military platforms 
they support even when the impacts themselves are humanly survivable.   
  
 Various types of shock response spectra (SRSs) [1, 2] are commonly used as 
analytical tools for the design and analysis of military hardware that will likely be subject 
to remote impulsive shock loading.  The remote impulse is filtered through the 
eigenstructure of the military platform to the attachment point of the supporting 
subsystem, which is in turn excited via its composite modes.   A single point on a SRS 
curve graphically represents the maximum time response of a hypothetical single-degree-
of-freedom (SDOF) mass-spring-damping (MSD) system, assumed to be attached in 
some desired direction at a contemplated or actual subsystem attachment point.  A 
complete SRS comprises a curve of the selected maximum response (typically absolute 
acceleration, relative position, or pseudovelocity [3, 4]) plotted as a function of SDOF-
system frequency, for a single damping ratio.  Figure 1 represents a shock-loaded system 
S with remote impact at point C and SDOF system attached at point D.  A single point 
( Vn S, )ω  of an undamped pseudovelocity shock response spectrum (PSRS), for example, 
would represent the maximum relative position dx−  of mass m, over time, multiplied by 
undamped natural frequency mk / , plotted versus that frequency: 
 
    ( ) ( ) ( )

max
: tdtxS nnV −=ωω . (1) 

 
For definitions of other common types of SRS, refer to [4]. 
 
 The approach employed by most analysts for determining the respective responses at 
a set of r attachment points, , to an input at C, is to use direct integration via a finite 
element analysis model.  For each impact point of interest on supported system S, the 
integration process must be repeated.  This is a very time-consuming process.  For a 
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Figure 1.  Shock-loaded system S,  

with (hypothetical) attached MSD system  
for SRS determination 

 
typical Stryker-vehicle analysis using, say, 1E5 shell elements and 1500 impact points, 
this approach takes about two days per impact for a set of attachment points.  Although it 
is too slow for many impacts, the method can be used for comparison in a few cases.  
  
 If the region of plastic deformation due to the impact is small, so that modal 
superposition can be used, the process is significantly faster.  For a Stryker vehicle 
analysis using 1E5 shell elements and 500 modes, the modal analysis time is about 72 
hours.  The subsequent transient analysis time for a set of attachment points then takes 
about 10 minutes, for each impact location.  Though much faster than the direct 
integration approach, with 1500 impact points the transient analysis time is still about 10 
days.  Then the response of the attached SDOF system must be evaluated numerically via 
a convolution integral (or some approximation of one) for each desired combination of 
impulse shape, impact location, attachment point, attached-system damping ratio, and 
attached-system natural frequency.  The results from either approach are typically 
compiled in a huge database for use in subsystem design and analysis.  Due to the 
immense computational overhead required with either of the above processes, methods 
are being sought which can speed up SRS development for a supported military platform. 
 
 As noted above, modal analysis offers the faster of the two routes to attachment-point 
transient response, provided the system model can be assumed to be linear (as is 
frequently realistic for point impacts).  If the remote shock input (e.g., at C, Fig. 1) can be 
idealized as a Dirac-delta function, then for Rayleigh or modal damping with symmetric 
mass and stiffness matrices the attachment-point transient response (e.g., at point D, Fig. 
1) can be determined analytically from the basic platform’s modal structure [5, 6].  In 
these cases, the system response is found using 2nd-order linear matrix differential 
equations.  For more general damping or with an asymmetric  mass or stiffness matrix a 
1st-order linear matrix differential equation (i.e., state-space form) can be used  [7].  In 
any of the above cases the response will be a linear combination of exponentially 
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decaying sinusoids of known parameters.  With Rayleigh damping the response has also 
been determined analytically for other idealizations of the remote input—such as a 
rectangular pulse or a sawtooth pulse [6].  The existence of an analytical solution, as in 
any of the foregoing cases, means that the appropriate structure (modal or eigen-) of the 
basic platform need be determined only once, irrespective of the number of impacts or 
attachment points.  This in turn offers an enormous savings in modeling and 
computational time and effort. 
 
 Further, from these analytical solutions the SDOF system’s kinematic response can 
also be determined analytically [5, 6, 7].  Consequently, each convolution integral that 
would otherwise be required to determine an SRS (i.e., for each undamped natural 
frequency and damping ratio, at each attachment point), can be replaced with an algebraic 
equation.  The computational savings is not significant for any single data point on an 
individual SRS plot; but since the number of convolutions that must be performed to 
develop the platform’s data base can be several hundred thousand, the additional 
computational savings can be quite substantial.  Additionally, use of algebraic kinematic 
responses, for attachment point and for SDOF-system mass, means that SRS data points 
can be determined exactly for arbitrarily low frequencies.  This would not be possible if 
nonalgebraic means were used for evaluating the convolution integrals [3].   
         
 The above paragraphs address the computational savings from impact idealization, 
system linearization, modal- or eigen-decomposition, and a priori (algebraic) 
convolution.  It is also possible, with some platforms, to represent an impacted surface by 
a plate with idealized geometry, material properties, and boundary conditions.  For many 
such cases exact continuous solutions, or continuous solution-approximations or bounds, 
exist in the literature [8, 9, 10].  The simplest case for which an exact solution exists is a 
homogeneous, undamped rectangular plate, simply supported on all edges, and subjected 
to a transverse external force density.  With these boundary conditions the eigenstructure 
can be represented explicitly.  Previously [11] the authors developed and solved 
algebraically, from this continuous solution, a linear, constant-parameter, lumped-
parameter, dynamical model of a homogeneous, simply-supported rectangular plate, to 
include either Rayleigh or modal damping.  The present paper repeats that development, 
and extends the approach to the more difficult case in which the boundary conditions for 
the four edges alternate between simply-supported and clamped as one proceeds around 
the perimeter of the plate.     
 
  
3 General Scenario 
 
 Consider a flat, linear, homogenous rectangular plate (Fig. 2) of length  ( -
direction), width b  ( -direction), uniform thickness h , Young’s modulus E, Poisson’s 
ratio ν, and mass density 

a x
y

ρ  per unit area.  The plate is simply supported on two opposing 
edges; on the other two edges the boundary conditions are either both simply supported 
(Case 1) or both clamped (Case 2).  Assume the plate to be subject to a time-varying 
transverse external force intensity (i.e., per unit area of plate surface):  
 

 4



  ( )tyxqq ,,= ,    (2) 
 
with the x and y axes lying in the undeformed neutral plane.  Finally, the plate is assumed 
to have either modal or Rayleigh damping. 
   

 

y 

h 

x

z 
a

b 

( )
i

iii
A

yxP
 area ofelement in 
 ,,at  ,Point  

SS (Case 1)   or C (Case 2) 

SS 

SS 

SS: Simply Supported 
C:   Clamped 

SS (Case 1) or C (Case 2) 

 
 

Figure 2.  Plate with opposing simple supports, to be discretized 
 

 The partial differential equation for the undamped plate is well-known (e.g., [9, p. 
257]): 
 
  ( )tyxqwDwtt ,,4 =∇+ρ ; (3) 
 
where  ( )tyxww ,,=  (4) 
 
is the transverse (z-direction) displacement of the neutral surface, 
 
the flexural rigidity D is defined by 
 

  
( )2

3

112 ν−
=

EhD , (5) 

 
the subscript notation indicates partial differentiation: 
 

  2

2
:

t
wwtt

∂

∂
= , (6) 

 
and    (7) 224 : ∇∇=∇
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is the biharmonic differential operator (the dual application of the Laplacian operator 

).  For rectangular coordinates the Laplacian is expressed by  2∇
 

  2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇ . (8) 

 
 The goals of this paper are as follows:  
 

(a) to use the plate’s partial differential equation (3) and its undamped solution, given the 
selected boundary conditions (i.e., either all edges simply supported, or supports 
alternating between simple and clamped), to develop a lumped-parameter differential 
equation for the damped plate in a useful linearized matrix form; 

(b) to use the matrix differential equation of motion to determine analytically the     
 response of the plate at arbitrary point ( )jj yx ,  to an impulsive shock input at a    
 different arbitrary point ( )ii yx , ; and 
 (c) to use the response solution at ( )jj yx ,  to determine analytically the kinematic    
 quantities needed for SRS computation at ( )jj yx , , under the assumption of various 
 types of idealized impulsive loading at ( )ii yx , . 
 
 
4 Case One: Simply Supported Edges 
 
4.1 Free Response of the Continuous Undamped Plate 
 
 Consider first the case where the plate is simply supported on all four edges, and 
responding freely to initial conditions.  The simply supported boundary conditions [9] are 
represented by  
 
  0=+= yyxx www ν . (9) 
 
 An analytical, modal solution to the homogeneous form of the undamped differential 
equation is well known, for this plate geometry and set of boundary conditions.  In 
particular, 
 

  , (10) ( ) ( ) (∑∑
∞

=

∞

=

=
1 1

,,,
m n

mnmn tyxWtyxw η )

 
where undamped natural frequency mn is 
 

  
⎥
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⎝
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ρ

ω , (11) 
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the associated modeshape is 
 

  ,sinsin ⎟
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and the corresponding undamped modal coordinate is  
 
  ( )mnmnmn t φωη += sin . (13) 
 
Constants  and mnC mnφ  depend on the initial conditions. 
 
 If the undamped natural frequencies are arranged in increasing order, then indices mn 
can be replaced with a single index k, and (10) through (13) can be rewritten as follows: 
 

   (14) ( ) ( )∑
∞

=

=
1

,,,
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where the undamped natural frequency is thk
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the associated modeshape is  
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and the corresponding undamped modal coordinate is  
 
  ( )kkk t φωη += sin . (17) 
 
4.2 Forced Response of the Discretized Damped Plate 
 
4.2.1 Matrix differential equation of motion 
 
 In terms of differential mass elements  
 
   dAdm ρ= , (18) 
 
(3) can be re-expressed, still for the continuous system, as    
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   ( ) ( ) ( )dAyxqwdADwdA tt ,4 =∇+ρ . (19) 
   
To express the mathematical model in finite-dimensional form, first discretize the plate 
into r elements of respective areas ( )riAi ,...,1= , with the mass  
 
   ii Am ρ=   (20) 
 
of the  element located in the element on the neutral surface, at some point  having 
coordinates 

thi iP
( )ii yx , .  (Refer to Fig. 2.)  The fidelity of the discretized representation can 

be expected to vary, of course, depending on the choices both of the value of  r and of the 
locations of points ; a reasonable location for  would be at the centroid of the  

mass element.  Lump the transverse loading on the element into concentrated force 
iP iP thi

thi
 
  ( ) ( ) i

A
i dAyxqtf

i

∫= , , (21) 

 
applied at .  Then for the  element (19) becomes    iP thi
  
  ( ) ( ) ( ) iyxiyxtti fwADwm

iiii
=∇+

,
4

,
. (22) 

 
In vector form, using transparent notation for the vector elements,  
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and  AM ρ= . (25) 
 
  
 Application of the biharmonic operator to (14) leads directly to 
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Expanding  in terms of rectangular coordinates via (8), applying it to (26), and 
approximating the modal sum by the first r terms, yields 

4∇
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The modeshapes can be discretized into vector form: 
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which can be normalized using the Euclidean norm: 
 

  
k

k
k u

u
m = . (29) 

 
Define pr ×  modeshape matrix 
 
  [ ]pmmU ,...,1= , (30) 
 
and use it to define a normalized modal coordinate vector η  as follows: 
 
  ηUw = . (31) 
 
It should be noted here that the number p of modes comprising U can never exceed half 
the number r of mass elements—and in many cases p must be considerably smaller—in 
order to avoid spatial aliasing effects.  In particular, for a rectangular plate comprising r 
equal rectangular elements of dimensions yx ∆×∆ , discretized modeshape ku  cannot 
represent continuous modeshape  without aliasing unless  kW
 
  max /<∆  (32) 
 
and  nby /<∆  (33) 
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for the particular values of m and n corresponding to  (and kW ku ). 
 
 Now, using (31), (25), and (27), the discretized equation of motion (23) can be 
expressed in terms of modal coordinates by 
 
  fMUMU =Ω+ ηη 2&& , (34) 
 

for   . (35) 
⎥
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=Ω

pω

ω
O

1

 
In terms of physical coordinates, and using  to represent the pseudoinverse of U,  +U
 
  fwKwM =+&& , (36) 
 
where  . (37) +Ω= UMUK 2

 
The pseudoinverse  was required above in lieu of the normal inverse, since U is not 
square. 

+U

 
 It should be noted here, for subsequent use, that although mass matrix M is 
symmetric—and diagonal (23)—stiffness matrix K is not necessarily even symmetric, as 
one can show readily by using 2=r  and solving for K  algebraically.  Further, the 
discretized modeshape matrix U is not necessarily unitary.      
  
 One can now insert modal damping into (34).  First premultiply each term of (34) by 

 to obtain  ( )+MU
 
  ( ) fMU +=Ω+ ηη 2&& . (38) 
 
Define a modal damping matrix by  
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Then from (38) the damped equations are  
 
  ( ) fMUCM

+=Ω++ ηηη 2&&& . (40) 
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Note that these equations are decoupled.  In terms of physical coordinates, via (31), (40) 
reduces to  
 
  fwKwCwM =++ &&& , (41) 
 
where  , (42) += UMUCC M

 
and K is as defined previously, by (37).  
 
  
 Alternatively, with Rayleigh damping, (36) becomes  
 
  fwKwCwM R =++ &&& , (43) 
 
where  KMCR βα += , (44) 
 
for some desired α, β.  In terms of modal coordinates, (43) is 
 
  fMUUCMU R =Ω++ ηηη 2&&& , (45) 
 
or   ( ) ( ) fMUUCMU R

++ =Ω++ ηηη 2&&& . (46) 
 
This reduces in turn to the decoupled set of equations 
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where, using rr ×  identity matrix I,  
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Alternatively expressed,  
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where  
i

i
i ω

ωβα
ς

2

2+
= . (50) 

 
 Observe that since K  is not symmetric, and since U  is not unitary, the usual unitary 
similarity transformation  has not been (cannot be) used to diagonalize the 
damping or stiffness matrix in either (41) or (43).  However, (40) and (47) still represent 
the respective modal equations in decoupled form.  

( )UU ⋅*

 
4.2.2 Response ( )tyxw jj ,,  to shock input ( )tyxf ii ,,  
  
 Using Laplace transforms, and assuming all modes to be underdamped, the modal 
solution to either (40) or (47) is 

thi
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Accordingly, upon applying (31), the physical coordinate vector is 
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O . (55) 

 
  
 Suppose that the only nonzero element of f  is a shock input  
 
    ( )tyxff iii ,,= ,  (56) 
 
applied to point .  Let the iP ( )ji,  elements of U  and  be represented by  and .  
Then for zero initial conditions (55) reduces readily to  

+U iju ijv

  ( ) [ ]
( )
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⎪
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⎪⎪
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⎨

⎧

∗

∗

=

∑

∑

=

−

=
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i
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dp
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dp
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i
i

i

i
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t

d

p
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te

mmtw
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n

1

1

1
1

1
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,...,

11

ω
ω

ω
ω

ως

ως

M , (57) 
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from which the displacement response  (at point ) to the force input  (at ) is jw jP if iP
 

   ( ) ( ) ∑
=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗=

p

k
dk

t

dk

kijk

i

i
j te

vu
m

tf
tw nkk

1

sinω
ω

ως . (58) 

 
If the shock input can be idealized as a Dirac delta of strength γ , the response is simply 
the sum of p exponentially decaying sinusoids: 
  

   ( ) ∑
=

−⎟
⎠
⎞

⎜
⎝
⎛=

p

k
dk

t

dk

kijk

i
j te

vu
m

tw nkk

1

sinω
ω

γ ως , (59) 

 
as expected.  Adding to (59) the effects of initial conditions, from (55), is straightforward, 
and not included here.  
  
 For certain other deterministic inputs  (e.g., rectangular,  sawtooth, haversine, or 
versed-sine impulses) the right-hand side of (58) can also be evaluated as an algebraic 
expression, upon performing the associated convolution integration analytically (rather 
than numerically).  Reference [6] shows the procedure for ideal-impulse (Dirac-delta), 
rectangular-pulse, and sawtooth-pulse inputs, in the related case of symmetric mass and 
stiffness matrices with Rayleigh damping.  For the case of more general damping, and 
with asymmetric mass and/or stiffness matrices (as here), [7] provides a general 
procedure using a state-space approach; and achieves an algebraic solution for a Dirac-
delta shock input.       

if

 
4.2.3 Determination of shock response spectra for selected deterministic inputs 
 
 For a Dirac-delta shock input, and with Rayleigh or modal damping, the linearized 
system response has been shown to be a sum of easily determined, exponentially 
decaying sinusoids available in algebraic form (59).  For rectangular-pulse and sawtooth 
inputs, the response would also include step and ramp components, and some time delays 
[6].  From these the remaining kinematic quantities behind common forms of shock 
response spectra could be found analytically as well, without requiring further 
convolution.  See [5, 6, 7] for details. 
 
4.3 Verification and Matlab Implementation  
 
 Two models were developed, and their respective shock responses compared, to 
verify the above equations.  Both models describe an isotropic, homogeneous, aluminum 
test-plate: the first, an analytical model, implemented in Matlab; and the second, a linear 
finite-element (FEA) model, implemented in ANSYS.  The plate material is 6061-T6 
aluminum, with Young’s modulus 69 GPa, mass density 2700 kg/m3, Poisson’s ratio 
0.33, and modal damping ratio 0.02 (all modes).  (See Fig. 3.)  The plate is simply 
supported along each of its four edges, with dimensions 1.0 m x 0.75 m x 25 mm.  Both 
models comprise uniform rectangular (parallelepiped) elements: 50 element divisions 
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along the length (x-direction, measured in the neutral plane from the lower left corner), 
and 38 along the width (y-direction, measured correspondingly).  Impulses of identical 
strength (50 N-s) were applied at corresponding impact points, and the responses were 
determined at three sets of corresponding response points, from zero initial conditions.   
   

Impacted Aluminum Plate Descriptions   Boundary conditions: simply supported on all sides
 
 Thickness: 25 mm 
 response point 3, node 1839

Impact point, node 328

response point 1, node 629 

response point 2, node 1379

Damping: 0.02

 
 
 

1.0 m
0.

75
 m

 

Node Coordinates (m) 
Node x y 
328 0.1 0.0789
629 0.26 0.178
1379 0.66 0.375
1839 0.9 0.691

Material:   al 6061 - T6
 E: 69e9

Mass Density: 2700 kg/m^3  Poisson’s ratio: 0.33
 
 
 
 
 
 
 
 

 

 
Figure 3.  Test plate, showing impact- and response points 

 

 
For the plots that follow the (x, y) coordinates of the impact and response points were 
(0.1, 0.0789) m and (0.66, 0.375) m, respectively.  A single 10-µs symmetric sawtooth 
pulse (Fig. 4) was used for the finite-element model; the analytical model assumed an 
ideal (Dirac-delta) impulse.  Twenty modes were used to determine the response of each 
model. 
 
 Figure 5 provides a side-by-side comparison of the 20 lowest modal frequencies 
(rad/s) from the respective models.  In no case did the analytical frequency differ from 
the FEA frequency by more than 0.25 %.  Figures 6 and 7 offer representative modeshape 
comparisons;  and Figure 8 plots response-point displacements from the two models, at 
Node 1379 (refer to Fig. 3).  The associated acceleration plots are shown in Figure 9.  
Corresponding modal frequencies, modeshapes, displacements, and accelerations all 
match well between the two models.     
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Figure 4.  Loading function for FEA model Figure 4.  Loading function for FEA model 
  
  

FEA – Ansys Analytical                       Difference (%)  168.6 168.6 0.015
350.6 350.7 0.030
492.2 492.4 0.027
654.0 654.3 0.041
674.1 674.5 0.061
977.1 978.0 0.093
1031.6 1032.0 0.042
1078.7 1079.3 0.052
1213.1 1214.2 0.085
1401.4 1403.0 0.119
1515.6 1517.7 0.137
1624.6 1625.6 0.065
1786.4 1787.5 0.061
1939.1 1942.7 0.185
1946.6 1949.4 0.142
1967.5 1969.6 0.108
2269.3 2273.2 0.173
2291.6 2293.4 0.079
2483.4 2489.0 0.228
2612.9 2617.2 0.163

  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 5.  Comparison of modal frequencies: 1st 20 modes Figure 5.  Comparison of modal frequencies: 1st 20 modes 
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Figure 6.  Modeshape comparison, 6th mode 
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Figure 7.  Modeshape comparison, 19th mode 
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   Figure 8.  Response-point displacement comparison, node 1379,  
  for an equal no. of elements (1900) and of modal components (20) 
  in both models.  Damping ratio: 0.02 for all modes. 
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 Figure 9.  Response-point acceleration comparison, node 1379,  
  for an equal no. of elements (1900) and of modal components (20) 
  in both models.  Damping ratio: 0.02 for all modes. 
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5 Case Two: Alternating Simple and Clamped Supports 
 
5.1 Free Response of the Continuous Undamped Plate 
 
 Consider next the plate to be clamped on two opposing edges (those with dimension 
a, Fig. 2); simply supported on the other two edges (those with dimension b); and 
responding freely to nonzero initial conditions.  The simply supported boundary 
conditions [9], as before, are represented by  
 
  0=+= yyxx www ν ; (60) 
 
and the clamped conditions [9], by 
 
  0== yww . (61) 
 
 As with the previous case, an analytical, modal solution to the homogeneous form of 
the differential equation is well known, for this plate geometry and set of boundary 
conditions (e.g., [8], pp. 45-50, and [9], pp. 259-264).  Unfortunately, however, now the 
modal frequencies here cannot be found in explicit form; they must be found via the 
numerical solution of transcendental equations.   
  
 The solution has the form  
 

  , (62) ( ) ( ) ( ) ( ) (∑∑∑∑
∞

=

∞

=

∞

=

∞

=

+=
1 11 1

~,~,,,
p q

pqpq
m n

mnmn tyxWtyxWtyxw ηη )

 
where ( )tmnη  and ( )tpqη~  are modal coordinates corresponding, respectively, to 

modeshapes  and ( yxWmn , ) )( yxWpq ,~ .  The modal coordinates can be expressed as 
 
  ( ) ( )mnmnmn tt φωη += sin  (63) 
 
and  ( ) ( )pqpqpq tt φωη ~~sin~ += , (64) 
 
for which modal frequency mnω is the  lowest root of the following characteristic 
equation for a fixed value of m: 

thn
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and modal frequency pqω~ is the  lowest root of the characteristic equation:  thq
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⎠
⎞

⎜
⎝
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a
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D
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a
bp

D
bp πρωπρωπ , (66) 

 
for a fixed value of p .  Equation (65) serves as the characteristic equation for 
frequencies meeting the condition 
 

   
ρ

πω D
a

m 2

⎟
⎠
⎞

⎜
⎝
⎛>  ; (67) 

 
and Equation (66), for frequencies satisfying 
 

  
ρ

πω D
a

p 2
~ ⎟

⎠
⎞

⎜
⎝
⎛< . (68) 

 
 To describe the associated modeshapes in compact form, first define the following, 
for convenience: 
 

  
2

⎟
⎠
⎞

⎜
⎝
⎛−=

a
m

Dmnmn
πρωµ , (69) 

 

  
2

~~ ⎟
⎠
⎞

⎜
⎝
⎛−=

a
p

Dpqpq
πρωµ , (70) 

 

   
2

: ⎟
⎠
⎞

⎜
⎝
⎛+=

a
m

Dmnmn
πρων , (71) 

 

and  
2

~:~ ⎟
⎠
⎞

⎜
⎝
⎛+=

a
p

Dpqpq
πρων . (72) 

 
Then the modeshapes have the following descriptions: 
 

 ( ) ( )( )[ yybbCyxW mnmnmnmnmnmnmnmn µννµµν sinsinhcoscosh, −−=  

             ( )( ])
a

xmyybb mnmnmnmnmnmn
πµνµννµ sincoscoshsinsinh −−− , (73) 
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and ( ) ( )( )[ yybbCyxW pqpqpqpqpqpqpqpq µννµµν ~sinh~~sinh~~cosh~cosh~,~ −−=  

              ( )( )]
a

xmyybb pqpqpqpqpqpq
πµνµννµ sin~cosh~cosh~sinh~~sinh~ −−− . (74) 

 
The coefficients  and mnC pqC~ , and the phase angles mnφ  and pqφ~  are constants whose 
values depend on the initial conditions.  Equations (63) through (74) complete the modal 
solution represented by Equation (62). 
 
 If the undamped natural frequencies (whether mnω  or pqω~ ) are arranged in increasing 
order, then (removing the tildes, which are no longer needed) the double indices can be 
replaced with a single index k.  Introduce also the symbols hsin  and hcos , each of  
which should be understood to represent either the indicated trigonometric or hyperbolic 

function, depending on the need.  And use kγ to represent the value 
a

mπ  or 
a

pπ , as 

appropriate.  The solution (62), then, becomes: 
 

  ; (75) ( ) ( )∑
∞

=

=
1

,,,
k

kk tyxWtyxw η ( )

 
where the undamped natural frequency thk kω  is a root of (65) or (66); the corresponding 
undamped modal coordinate is  
 
  ( ) ( )kkk tt φωη += sin ; (76) 
 
and the associated modeshape ( )yxWk ,  comes from (69), (71), and (73), or (70), (72), 
and (74), as appropriate:      
 
 ( ) ( )( )[ yybbCyxW kkkkkkkk µννµµν hsinsinhhcoscosh, −−=  

          ( )( )] xyybb kkkkkkk γµνµννµ sinhcoscoshhsinsinh −−− . (77) 
 
 Define next the following constants, for convenience:  
 
 bb kkk µνβ hcoscosh:1 −=  (78) 
 
and  bb kkkkk µννµβ hsinsinh:2 −= , (79) 
 
Then (77) can be rewritten as  
 
    ( ) ( )[ yyCyxW kkkkkkk µννµβ hsinsinh, 1 −=  
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    ( ] xyy kkkk γµνβ sinhcoscosh2 −− ) , (80) 
 
or, more compactly, 
 
   ( ) xyCyxW kkkk γψ sin)(, = , (81) 
 
where      ( ) ( )yyy kkkkkk µννµβψ hsinsinh1 −= ( )yy kkk µνβ hcoscosh2 −− . (82) 
 
Equation (62) can now take the simple representative form, 
 

  . (83) ( ) ( )[
( )

( )∑
∞

=

=
1

,

sin,,
k

k

yxW

kkk txyCtyxw

k

ηγψ
444 3444 21

]

 
5.2 Forced Response of the Discretized Damped Plate 
 
 One can proceed as before with the simply-supported case.  Application of the 
biharmonic operator to (83) leads directly to 
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444 3444 21

 
Expanding  in terms of rectangular coordinates via (8), applying it to (84), and 
approximating the modal sum by the first r terms, yields (after some effort) 

4∇

 

  ( ) (∑
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kkk tyxW

D
w

1

24 , ηωρ ) . (85) 

 
The modeshapes can be discretized into vector form: 
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MM , (86) 

 
which can again be normalized using the Euclidean norm (29).  The remaining 
development of the shock-response equations is as presented before, from (30) through 
the end of Section 4.  The general results are as given by (55), which, for the special case 
of zero initial conditions and single-point loading, simplifies to (58).  If the loading is 
further idealized as a Dirac delta, (58) reduces again to (59).  The shock response can 
then be used to determine the SRS at the response point of interest.  
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6 Conclusion 
 
 

 This paper has documented the development of a a constant- and lumped-parameter 
linear matrix model of a homogeneous, rectangular plate subject to transverse ballistic 
shock, for two classes of boundary conditions: (1) all edges in simple support, and (2) 
edges alternating between simple and clamped (fixed) support as one proceeds around the 
perimeter.  Although the model was derived from a continuous (and exact) analytical 
model of an undamped plate, it was augmented to include either Rayleigh or modal 
damping.   For each class the augmented equations were then solved analytically for the 
case of an ideal-impulse, transverse point-shock load.  Matlab implementations (1st case 
only) were benchmarked against linear FEA models, with comparisons made using the 
first 20 modes.  The frequencies, modeshapes, and displacement and acceleration 
responses all match well.    
 
 The model is provided in a form suitable for using a one-time eigen-analysis of a 
system to yield system kinematic responses that are useful, in turn, for various SRS 
determinations—that is, given an arbitrary impact-point/response-point pair.  The 
enabled “same-plate” shock analysis, while not encompassing an entire military vehicle, 
would treat the most severe cases of shock response, for components mounted directly on 
the impacted plate.   
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