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Project

Advanced Ceramics
Conditions: high strain rate, high stress, large strain
Materials: armor ceramics

Goals
Contribute to fundamental theory about cracking of
advanced ceramics
Develop quantitative relationships between

stress distributions and
microstructures (texture, grain size, grain shape)
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Today’s Goals

Report on progress made in understanding affect of texture on
internal stress and clarifying internal stress distributions

Outline
1 Crystallographic Texture

Relationship to Stress
Visualization and OOF2
Thermo-anisotropic Elasticity
In Progress

2 Stress Distributions
Papers Reviewed Last Year
Research Direction
In Progress
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Texture

σ = C(w)[E ]

Elastic constants Cijk`

Orientation distribution function

w(ψ, θ, φ) =
∞∑
`=0

∑̀
m=−`

∑̀
n=−`

W`mnZ`mn(cos θ)e−imψe−inφ

with texture coefficients W`mn
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Visualization

What does the internal stress distribution look like?

OOF2
Object Oriented Finite element method in 2-dimensions
Specifically designed for use on actual micrographs
Heat & force balance equations (∇ · flux = applied force)
Plane flux equations (out of plane components of flux = 0)
Can be extended using C++ or Python
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OOF2

available at http://www.ctcms.nist.gov/oof
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Thermo-anisotropic Elasticity

Thermal contractions lead to fracture in brittle materials
Equations of thermo-anisotropic elasticity

∇ · σ = 0 equilibrium
∇ · h = 0 balance of energy

σ = C[E ]− BT stress-strain law
h =−κ∇T heat conduction

B = thermal expansion tensor, κ= thermal conductivity tensor,
h = heat flux, T = temperature

Solved in 2-D by T.C.T. Ting (1996) using Stroh’s formalism
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In Progress

Visualize internal stress in AlON
Implement thermal-anisotropic elasticity equations
Use material constants, orientation data, and micrograph
from actual sample
Use OOF2

Extend as necessary
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Stress Distributions

Papers Reviewed Last Year

1 X.H. Zhang, et al. (2004)

2 D. Zhang, et al. (2005)

3 Tasdemirci and Hall (2005)
Split Hopkinson Pressure Bar
experiments and simulation
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Last Year (con’t)

Maximum stress alone is not best predictor of damage.
Stress inhomogeneity is important too.

After microcracking but before large cracks: high stresses
shift rapidly from one location to another.

As compressive stress increased: heterogenity of stress
states increased.
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Research Direction

Hypothesis
High stress next to low stress is a critical event
Heterogeneity of internal stress states, not simply
exceeding max stress, leads to cracking

Idea
The heterogeneity of internal stress can predict imminent crack
formation.

=⇒ Use internal stress state to predict response of ceramics to
high strain rate, high stress, large strain conditions
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In Progress

Characterize stress states using fractal dimension

Definition (fractal dimension: box-counting dimension)
Given a self-similar object of N parts scaled by the ratio r from
the whole, its fractal dimension is

D =
log N

log (1/r)
.

Multifractal formalism
When different subsets of the object exhibit different fractal
dimensions the object is considered to be multifractal
The singularity spectrum fully describes a multifractal
object
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Summary

Effects of Texture
1 Preferred crystallographic orientation and mechanical

anisotropy of individual crystals affects stress response
2 Working on numerical solution to thermo-anisotropic

equations using OOF2 and “real” data to visualize affects of
anisotropy on internal stresses under compression

Stress Distributions
3 Simulations reported by others show stress

heterogeneities prior to cracking
4 Multifractal formalism under investigation as method to

characterize heterogeneous stress states prior to cracking.
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-End of Slides-

Quantitative relationships between
stress distributions, microstructure, and

high strain rate performance of advanced ceramics:
an interim report

Project Goal
To better predict fracture in advanced ceramics under high
strain rate, high compressive stress, and large strains by
studying microstructure and internal stress distributions

leigh.noble@usma.edu
MADN-MATH, USMA

West Point, NY 10996-1905 USA
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