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Introduction 
Pursuit and evasion are simple ideas involving movement of participant players and pursuit-
evasion (sometimes called seek-flee) is often played by people in the form of games and 
activities (tag on the playground, football and many other sports, search and rescue, police 
chases, etc.). In the predator-prey relationships in the natural world, pursuit and evasion is the 
very essence of survival.  While the overall concept seems simple to comprehend and is quite 
intuitive to humans, understanding the details of the actions and implementing optimal (or even 
competent) pursuit and evasion strategies in algorithms seem to be complex and challenging.  
Finding proper metrics for the measurement of models or algorithms seem to be even more 
difficult – yet this is an important step in this research area. 
 
Classical pursuit-evasion modeling and algorithm development has always been of interest to 
mathematicians and the military.  On the mathematics side, differential and difference equation 
models were directly formed from physical relationships and sometimes solved in closed-form, 
and, as the models were refined and amplified, approximations were made to solve the more 
sophisticated models.  Further analysis led to optimal solutions for some special cases.  On the 
military side, the pursuit-evasion models helped to develop control systems for target-tracking 
missiles and to develop evasion controls and maneuvers for high-speed combat aircraft.  Often, 
the assumptions made for these phenomena were severely limited and therefore the models were 
naïve -- one pursuer and one evader or possibly a handful of one or the other and simple or non-
existent maneuver constraints for the participants.  Very seldom were realistic constraints or 
tangible scenarios successfully considered. Very seldom was a coordinated pursuit or evasion 
considered or were models developed for combatants who sought to pursue but evaded only as 
necessary (alternating roles of pursing and evading).  Despite the simplicity of the assumptions 
and models and the depth of the research on this problem, there remain many unresolved issues 
in naïve pursuit-evasion, such as realistic inclusion of goal-seeking participants (evade only as 
necessary while still seeking to reach a specified goal), optimal methods of movement and 
operation (except in special cases), under what conditions is capture by the pursuer guaranteed as 
well as conditions for guaranteed escape by the evader, and most importantly, what are the 
proper performance metrics to measure and understand as algorithms are developed.  As we 
approach an era of robots, UAVs, UGV, and UUVs and information significance in military 
operations, there are many more scenarios of pursuit-evasion to consider with mathematical 
modeling and analysis.  Certainly, complex systems of many pursuers and evaders can be 
envisioned.  Coordination and cooperation among the participants of one side needs to be 
considered and understood.  What kind of communication and control are needed to help the 
participants achieve their goals?  Can swarming phenomena be understood and included in the 

 1



basic models?  Are there optimal strategies to follow?  Can an intelligent player learn new 
strategies as the pursuit or evasion takes place and details of the environment are learned?  How 
are these more sophisticated pursuit-evasion scenarios modeled and analyzed?  What can we 
learn now so we can build proper algorithms and equipment (robots) for future success in the 
new era of military pursuit and evasion?  These questions and many others are on our minds as 
we study this problem, using a broad set of mathematical modeling methodologies from various 
areas of mathematics and, in particular, new ideas from the area of cooperative systems.  
 
Basic Concepts & Assumptions 
Pursuit:  There are many situations where one thing, (person, animal, or machine), chases 
another.  Applications of pursuit in the military are: missiles intercepting planes (or other 
missiles), smart munitions seeking evaders (i.e., anti-tank rounds seeking a tank), a unit or 
soldier pursuing and closing on an enemy unit or soldier, ships closing in on other ships, and 
torpedoes tracking and exploding on enemy ships.  There are many non-military applications as 
well.  These applications are three-dimensional (occurring in our three-dimensional world), but 
some scenarios are more easily and possibly better modeled in two dimensions because one 
dimension, height, is not significant.  Much of the model development for pursuit-evasion is 
performed in two dimensions, then refined as necessary to handle three dimensions.  The first 
problem we consider is to determine the movement path for the pursuer, given we know the 
location of the evader.  We will start with the assumption that the pursuer has complete vision of 
the evader and knows the evader’s position exactly.  Of course, this is a substantial assumption, 
because that is very difficult to achieve.  The pursuer’s position is represented in 2-dimensional 
Cartesian coordinates by (x0(t), y0(t)), with time t measured from the start of the scenario.   
 
Evasion:  The evasion component of the problem is just the opposite of pursuit:  determine the 
movement path for the evader, given we know the location of the pursuer.  We start with the 
assumption that the evader has complete vision of the pursuer and knows the pursuer’s position 
exactly. Again, this is not reality, since such perfect vision is never possible.  The evader’s 
position is represented in two-dimensional Cartesian coordinates by (x1(t), y1(t)).   
 
Discrete or Continuous 
We can model this movement as continuous or discrete. There are at least two reasons why we 
model the movements discretely: 1) our final model will have to be implemented with discrete 
sensors/controllers, and 2) we will have highly nonlinear, complex models that will ultimately 
require discrete methods to solve, no matter if we initially use continuous models. The main 
reason continuous models may be preferred is to perform more powerful analysis and identify 
property metrics (especially for optimization).  However, most of what we are doing here is 
beyond the scope of continuous analysis and falls into the area of hybrid or cooperative systems. 
Under the assumption of a discrete event model of time periods (intervals of length t), we use 
n to indicate the number of the time step in the model.  During a time interval t from time t, t
pursuer moves to a position given by (x

∆
∆ he 

0(t+∆ t), y0(t+∆ t))  We convert these two functions of 
the continuous variable t to discrete functions of our discrete time interval n.  If we use the 
generic relation that  t = n t , we can represent x

. 

∆ 0(t) by x0(n),  y0(t) by y0(n),  x0(t+∆ t) by 
x0(n+1),  and  y0(t+ t) by y∆ 0(n+1).  Similarly, the evader’s position is modeled by (x1(n), y1(n)).   
 
Naïve, First-Principle Modeling    
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Pursuit:  Returning to the problem of determining the movement path for the pursuer for a time 
interval, given that the pursuer knows the exact location of the evader, we also assume tha
pursuer moves at a constant speed (given by s

t the 
o 

y (n)), (x0(n+1), y0(n+1)), (x1(n), y1(n)) and the change 
 location of the pursuer in each direction 

0).  One technique to use for the pursue model is t
have the pursuer move directly towards the evader.  This means that the pursuer receives 
information as to the exact location of the evader and heads in that exact direction for the time 
period.  As the location of the evader changes over the discrete intervals, the pursuer adjusts its 
path at each time interval to continue to move directly toward the evader.  We can diagram our 
relationship by plotting the points (x0(n), 0

∆ x0 =(x0(n+1)- (x0(n)), and ∆ yin 0.= (y0(n+1)- (y0(n)).  
This visual model is given in Figure 1.   
 

(xo(n+1 ), yo(n+1 ))

(x1(n), y1(n))

(xo(n), yo(n))

∆yo

∆xo  

 between the similar right triangles enables us to write our difference equation 
odel.  We write out the equations relating the sides of the triangles with the hypotenuse of the 

triangles.   
 

Figure 1:  Movement by the pursuer during the time interval n  to  n+1. 
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We rewrite to create a system of two nonlinear difference equations  
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ovides a means of determining the movement the 
ursuer, when we know the location of the evader.  This system can be solved by iteration from a 

known starting location of the pursuer.   

 
This is our basic pursuit model, which pr
p
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Evasion: Returning to the problem of determining the movement for the evader, given that we 
know the location of the evader, we assume that the evader knows the pursuer’s position exactly
We also assume that the evader moves at a constant speed (given by s

.  

e 
irectly 

way.  It is easy to see that the evasion equations are similar to those of the pursuer:   
 

1).  One technique to use 
for the model is to have the evader move directly away from the pursuer.   As the location of th
pursuer changes, the evader adjusts its path at each time interval to continue to move d
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s of determining the movement the 
vader, when we know the movement of the pursuer.   

ur equations that we can iterate, once we know the starting 
ositions for the pursuer and evader: 

 

 
This is the basic evasion model, which provides a mean
e
 
One-vs-One 
In order to fully implement both aspects of the scenario with one pursuer and one evader, we 
have a discrete system of system of fo
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here s0 and s1 are parameters for the speed of the purser and evader, respectively. 

 
ision 

al 
 

 
W
 
Sensors & Intelligence 
How realistic is the assumption that the pursuer has complete vision of the evader and knows the
evader’s position exactly?   How realistic is the assumption that the evader has complete v
of the pursuer and knows the pursuer’s position exactly?  These assumptions are not very 
realistic no matter how good or how redundant the sensors are.  Possibly, the closer two agents 
become the better the sensor’s vision and therefore, the better the data.  While there are sever
ways to model the fog of the sensors and the inaccuracy of measuring direction and distance
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from one viewpoint, introducing random error into the exact values is a common modeling 
mechanism.  However, we will have to do better sensor modeling as it relates to data collection 
and information flow.  Networked sensors that synthesize their own data with that of their 
neighbors promise to revolutionize event detection and decision-making, but this promise ca
be fulfilled without substantial progress in the ability to analyze data locally, communicate 
efficiently, and combine analyses globally. Deciding what data to collect and process locally, 
when to share data, which sensor should be in charge, and when the lead sensor should requ
data from other sensors or pass leadership to anothe

nnot 

est 
r sensor are important issues for many 

oblems, including these pursuit-evasion models. 

ke 

 
nctions x1(t) and y1(t) representing the two dimensions of the target’s path.  We can 

rite     

pr
  
Lead Strategies 
How do we get the chaser to “lead” the target?  Using Taylor polynomial approximation, we ta
into account both the speed and the velocity of the target, then use that information to predict 
where the target will be when the chaser catches the target.  We can use this approximation for
the two fu

 x t x t x t1 1 1( ) ( ) ( )+ = + ′∆ ∆τ τ    and       y t y t y t1 1 1( ) ( ) ( )+ = + ′∆ ∆τ τw .                 
 
The value of  ∆ τ  is the value of the time advance to the location where the target is predicted t

oper lead.   Then the “phantom” location to aim for is simply the point 
( ( ), ( ))x t y t1 1+ +∆ ∆

o 
be, in order t  a pro have

τ τ .   Since we assume that we only know the location and not the velocity, 
we can approximate the derivatives with differences. Therefore, we modify the model using this 
“phantom” lead point in place of (x1(n),y1(n)).  The geometry of this lead algorithm is shown in 

igure 2.  
 
F

xo(t) , yo(t) ∆x

∆ y

x1(t+ ∆τ) , y1(t + ∆τ)

x1(t) , y1(t)

(Target’s current
      location)

lead point

Chaser’s movement
direction

(Chaser’s current
location)  

 
Figure 2:  Path of chaser when heading for the “lead” point. 

 
We need a reasonable (if not yet optimal) way to determine the value for ∆τ .  To determine ho
much we should lead, we need a time to catch.  We could do this several ways.  One way is to 
think of ∆

w 

τ as the time needed to catch the target if it doesn’t move.  We can approximate this
“catch” time by using the e for the chaser to reach the target’s current location.  Therefore, 
one possible formula for ∆

 
 tim
τ is simply the current distance between the c er and the target 

given divided by the pursuer’s speed s0.  We write this as 
has
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The velocity of the evader (derivatives x1’(n) and y1’(n)) is not known, so we have to 
approximate them by simple differences.  The following substitutions are therefore made in the 
model: 

t
nxnx

nx
∆

−−
=

)1()(
)( 11'

1     and      
t

nyny
ny

∆
−−

=
)1()(

)( 11'
1  

There are probably many other reasonable ways to determine ∆ τ , but we need to seek an 
optimal or near optimal way to perform the lead. 
 
Evasion Strategies 
How does the evader deceive the pursuer into slowing its approach or missing completely?  Can 
we use the pursuer’s “lead” against it?  One idea is to oscillate the path of evasion, so that the 
pursuer is oscillating even more violently than the evader as it tries to lead the evader.  One way 
to implement this idea is to vary randomly at set angles from a direct path away from the 
pursuer.  At each timestep, randomly move directly away, move away at an angle above or move 
away at an angle below the direct path (random walk like evasion).  In this model, the pursuer 
may become confused and lead the evader by too much, thus slowing its forward progress 
toward the evader.  This could definitely affect the pursuer if there were maneuverability 
constraints put on its movement.  However, there are many other ideas for evasion, especially if 
the evader has obstacles to hide behind or mechanisms to blind its pursuers.  Local greedy 
algorithms that minimize immediate capture need to be compared to global models that seek to 
reduce likelihood over capture over long time horizons.   
 
Maneuver Constraints 
What about the maneuverability of the chaser?  Can it always turn fast enough to make the 
necessary moves of the algorithm?  These are difficult questions that merit further study and 
more sophisticated mathematical models.  We have already assigned different, but constant 
maximum speeds to the evader and pursuer.  Now we may want to place constraints on the 
maneuverability of the players.  For instance, if the evader is allowed to oscillate its path at 
specified angles (described in the previous section), the pursuer may try to oscillate at even 
greater angles to try to lead evader.  One idea is to allow the evader to move without constraint 
because the evader can be more proactive about its movement.  The pursuer must be reactive and 
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therefore constraining the pursuer’s maneuverability is one option.  One idea is to restrict the 
angle of the movement during a timestep.  Another is to slow the pursuer’s speed proportionally 
for any timestep for which there is large angular change in its movement.   
 
Goal-oriented Evaders 
Often evaders are trying to accomplish a mission and they evade pursuers only to the extent in 
which they can still accomplish their mission (continual mission focus).  Or, in another scenario, 
the evader may try to accomplish the mission, but once so threatened by the pursuer, abandons 
the mission and evades to attempt to make an escape (mission-evade-escape-survive).     
 
Making the Catch 
What constitutes a catch or capture?  How close does the pursuer have to get to the evader?  
Certainly the type of scenario dictates the rule of the catch.  Are there different strategies for the 
pursuer and evader when they are very close (within a few timesteps of potential catch)?   
 
N-vs-K 
As was mentioned in the introduction with the advent of UAVs, UGV, and UUVs, systems of 
many pursuers and evaders can be envisioned.  The mathematical study of pursuit-evasion games 
with a single pursuer and a single evader began in the 1950s at Rand Corporation.  With the 
advent of mobile agents in modern military operations, the need for systematic studies of more 
complex pursuit-evasion scenarios with multi-pursuers and multi-evaders becomes increasingly 
important.  What happens when N pursuers (N>1) try to catch K evaders (K ≥1)?  Questions 
about which evader does an individual pursuer go after, which pursuer does the evader run from, 
and how do the pursuers ensure they pursue all the evaders?  These are just some of the issues to 
resolve.  It’s hard enough just to determine which of the enemy is the closest.  How can one 
implement a good strategy when the situation environment seems so chaotic? 
 
Cooperation Strategies (communicate, surround, deceive) 
In the N-vs-K case, how does communication between the pursuers or between the evaders help 
their causes?  What kind of information is valuable and how is that information used to control 
the movements of the players?  These and many issues are needed to be studied.  One approach 
might be for the pursuers in a pursuer-heavy scenario to communicate about which evaders they 
should evade (equal division) and then move to surround the designated evader.  Once the 
pursuers surround their assigned evader, they can close in for the catch.  Are there different 
deception strategies for the evader when there are multiple pursuers after it?  How can 
communication and group strategies help the evader?  Can sentinel evaders pass the word of 
oncoming pursuers, to give the other evaders an advantage toward escape? 
 
Control & Swarming  
Even with communication between pursuers, how do they coordinate their actions?  There are 
probably many strategies to consider.  Centralized control requires considerable communication 
from the players to the controller and vice versa, but this type of control may allow for the best 
global behavior.  Distributed control, where the decisions are made locally would reduce 
communication requirements.  One idea is to assign pursuers a region (grid zone) to cover and let 
the local pursuers in that zone pursue evaders in the zone and then if an evader escapes their 
zone, they just ignore that evader (like a zone defense in basketball) because they know that it 
has become someone else’s responsibility. What communication is necessary in this zone 
approach?  There are many issues involving this communication overhead and the decision 
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delays, refresh rates of sensors, and even the numerical stability of the system for various 
timestep size and equations.  Sensors and agents that synthesize their own data with that of their 
neighbors promise to revolutionize event detection and decision-making, but this promise cannot 
be fulfilled without progress in the algorithms to analyze data locally and combine analyses 
globally. Deciding what data to process locally, when to share data, which agent should be 'in 
charge', and when the leader agent should request data from others or pass leadership to another 
agent are some of the complex issues. Decentralized control mechanisms that use very simple 
protocols have proven to be effective in some applications.  The idea of very simple control, like 
swarming insects that just seem to take queues from one another or follow the leader or head 
straight for the nearest enemy, would simplify the communication, but is it effective in capturing 
all the evaders.  Won’t the majority of the evaders escape while the swarm is after the first few 
unfortunate victims or sacrificial lambs?  For the evaders, would a flocking behavior help protect 
enough agents to accomplish the mission? 
 
Optimality 
Can we hope to achieve optimality for simple scenarios and do the simple optimal algorithms 
help us understand the complex scenarios?  Can continuous modeling and analysis of potential 
functions give meaningful results for realistic maneuver control?  Our learning models, such as 
genetic algorithms better for analysis and achieving optimality? 
 
Dimensions & Geometry 
Most of our thinking and modeling has been done in two dimensions, but as was mentioned in 
the introduction, the real applications are in three dimensions.  What difficulties does the 
additional dimension cause for the models, theories, algorithms?  So far we have not mentioned 
geometric complications, varying heights affect line of sight in the third dimension, obstacles can 
help hide evaders, and other factors can obscure sight -- like fog or evader-induced smoke.  
 
More Questions 
What is the optimal ∆τ  to lead the target?  Perhaps, ∆τ  should be 0 (no lead).  Are there better 
lead models?  We could keep more than just one term of the Taylor Polynomial to help determine 
a proper lead.  If we keep two terms, we would get new approximations for our “lead” location 
of the target.  We would then take into account the acceleration of the evader, as well as its 
velocity.  The new lead model would be:  and 

.   This creates a messier nonlinear model, but why stop 
at second order?  How many derivative terms is optimal, under what conditions? 

2
1111 )()()()( ttxtxtxtx ∆′′+∆′+=∆+ ττ

2
1111 )()()()( ttytytyty ∆′′+∆′+=∆+ ττ

 
Simulations 
Example 1: To Lead or not to Lead (1-vs-1)? 
The pursuer starts at (0,0)  with speed 5 and the evader does not detect the pursuer (or chooses to 
ignore it) and therefore follows its mission-based oscillating course given by:                     

  and   .  We use three different tracking models for the pursuer: 1) 
moving directly toward the evader, 2) leading the evader by using the velocity (first-order Taylor 
polynomial) and 3) leading the evader by using velocity and acceleration (second-order Taylor 
Polynomial).  Our stopping criteria is  

ttx 33)(1 += )3sin(2)(1 tty =

ε =0.25.  The path of the direct tracking is given in Figure 
3.  The catch is made at t=3.9 seconds.  The path of the velocity tracking is shown in Figure 4.  
This path is more efficient and the catch is reduced to 2.8 seconds.  The lead using both velocity 
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and acceleration produces the paths in Figure 5.  This model produces a catch at 2.7 seconds.  
This last method is slightly faster than the velocity only model.  Sometimes it doesn’t help or it 
may even hinder to lead the target?    
 

igure 3: Paths of target (dotted curve) and chaser (solid curve) using the model of moving 

using the velocity lead model.  

F

), (24, -3), and (15, -14), 
0) on 3 sides (west, east, and south).  Pursuer 

has speed 8.2, and the evader has speed 6.6.  At 
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).  Initially, Pursuer 1 is closest, but at t=0.48, 
aborts its mission at t=0.88.  
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directly toward the target.   
 

Figure 4: Paths of target (dotted curve) and chaser (solid curve) 

igure 5: Paths of target (dotted curve) and chaser (solid curve) using the velocity and 
acceleration lead model.  

closest.  The evader is literally caught in the middle, as the 2 pursuers (1 and 2) seem to close in.  

2

 
Example: Leading, oscillating, maneuver constraints, 3-vs-1 

In this scenario with timestep ∆t=0.04, the 3 pursuers start at (0, -2
which partially surround the evader starting at (10, 
1 has speed 5, pursuer 2 has speed 7, pursuer 3 

first, the evader follows its set mission path (counter-clockwise), wh
closing in on the evader using a lead time of (.5 ∆τ
pursuer 2 is closest.  The evader feels endangered by pursuer 2 and 

The evader flees from pursuer 2, but then by t=1.44 runs itself back to a p
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The evader does manage to run northwestward (logical since pursuer 1 is the slowest) in an 
oscillatory manner, but the oscillations do not seem to slow the pursuers or affect their 

aneuverability very much.  Then, at t=2.96, the fastest pursuer (pursuer 3) has closed in and
minates the rest of the chase.  By t=3.74, the chase is over and pursuer 3 catches the out
numbered, out-horsepowered evader.  The paths of the 4 players are shown in Figure 6. 
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Figure 6: Paths of 3 pursuers against 1 evader 
hanging Strategies 

As the pursuit-evasion ga egies for both kinds of 
(or time to potential capture) changes.  Let’s look at the 1-vs-1 case first.  

nd 

s 
t the 

 or 
  

 use a circular model with the evader in the center; we could also just reflect the radial 

egion 4 

C
me is played, there appears to be changing strat

players as the distance 
First, let’s consider the pursuer (see Figure 7).  When the pursuer is far away (region 5), it looks 
for evaders, but hasn’t seen any yet.  The pursuer enters region 4 when it detects an evader to 
chase.  In region 4 the pursuer wants only to close distance so it moves directly toward the 
evader (no leading).  As the pursuer enters region 3, it realizes that the evader has detected it a
needs to be smarter to close distance.  In this region, the pursuer tries to lead the evader to 
shorten the distance (time) to catch.  In region 2, the pursuer decides to continue leading, 
modifies the lead distances, or goes straight for the evader depending on the evader’s tactic
(random oscillations, hiding, running, etc).  The pursuer is in region 1 when it believes tha
catch is inevitable and close.  In this region, it moves directly at the evader (trying not to miss
be faked out by the evader’s maneuvers).  Region 0 is the radius of the catch (the chase is over).
 
Now, let’s consider the evader which is on a movement mission (see Figure 8).  We’ll continue 
to
distances to define the regions.  When the evader is far away from pursuers (region 5), it looks 
for pursuers, but hasn’t seen any yet, so it continues with its mission.  The evader enters r
when it detects a pursuer.  However, in region 4, the pursuer is still quite far from the evader so 
the evader continues the mission and just watches the pursuer.  The evader enters region 3 when 
it realizes that the pursuer is threatening its safety and it decides to actively evade.  In region 2, 
the evader decides to use maneuver and/or deceit to evade (oscillate, smoke, hide, etc).  The 
evader is in region 1 when it believes that the catch is inevitable and close.  In this region, it 
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attempts all maneuvers to include drastically changing tactics (go directly toward pursuer and
execute a final oscillation, etc).  Region 0 is the radius of the catch (the chase is over).  
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When we produce and analyze similar regions for the N-vs-K scenario, there are more regions to 
consider as the groups of agents need to communicate, collaborate, decide as all the many 
distances between closest enemies change.  We won’t lay out a regional scenario for changing 
strategies in this case, but just some of the things to consider are: types of data to transmit and to 
who, who makes the decisions and when, when to decide on who to chase, when to change 
targets, who to evade from, should there be sacrificial lambs, who decides who to sacrifice?   
 
More Questions 
While we have asked many questions in this review, there are many more that we have not yet 
considered.  A valid step in this research is to assemble the questions that are needed to be 
considered.  Another is to conjecture results and build scenario test beds to validate the 
conjectures.  Of course, different objects for the pursuers and evaders can change the nature of 
the problem.  Special cases, with goals like herding rather than capture, can be studied in as 
much detail and may produce quite different results. 
 
Research Agenda 
We have used differential (difference) motion/dynamics models and have taken a computational 
geometry/differential games approach to this problem.  Some researchers approach the 
optimality issues through nonlinear programming or optimal control. We haven’t discussed those 
approaches to the issues, but there are good references to that kind of approach. There are several 
other different approaches that are often used – a probabilistic approach involving stochastic 
pursuit-evasion, a graph theory approach, a state space and information space approach, and a 
machine learning (genetic algorithms) approach.  It would be interesting to see how the theories 
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and results of the different approaches compare. Most importantly, developing and identifying 
the proper performance metrics so good comparisons can be made is the ultimate goal of the 
mathematical research.  It is evident that the deployment of mobile interactive agents (robots, 
UAVs, UGV, UUVs) will become increasingly important in the surveillance and pursuit of 
adversary forces in future military operations.  Mobile agents will be equipped with sensors and 
wireless communication capabilities to coordinate among the friendly agents in order to pursue 
the enemy evaders or to evade enemy pursuers.  In order to achieve these goals in an efficient 
manner, group coordination must be resolved under the various physical and informational 
constraints of the battlefield.  Studies of group coordination and formation of these interactive 
agents in discrete time environments have just begun.  Many important issues and challenges still 
need to be resolved.  Due to the mathematical complexity in the formulation and analysis of 
information flow and the challenging issues related to the vision and decisions of the agents, the 
progress made in this area has been very limited.  The purpose of this project is to initiate and 
build up research efforts in hopes of developing theories, processes, tools, and algorithms for 
efficient pursuit/evasion strategies.  As a consequence, the ultimate designers and manufacturers 
of robots, UAVs, UGV, and UUVs will be better informed for efficient pursuit-evasion 
strategies.  It is feasible that these basic research results will have a significant impact on the 
future of military operations. 
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