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What is the fourth dimension?

In Einstein’s special theory of relativity, the fourth dimension is time.

In this theory, instead of thinking of space and time as separate

things, we think of spacetime, a four-dimensional space.

In three dimensional space, two vectors ~p = (p1, p2, p3) and ~q =

(q1, q2, q3) have a dot product defined by

(p1, p2, p3) · (q1, q2, q3) = p1q1 + p2q2 + p3q3

In spacetime, two 4-vectors p = (p0, p1, p2, p3) and q = (q0, q1, q2, q3)

have a dot product defined by

(p0, p1, p2, p3) · (q0, q1, q2, q3) = p0q0 − p1q1 − p2q2 − p3q3
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What is the fourth dimension?

In Einstein’s special theory of relativity, the fourth dimension is time.

In this theory, instead of thinking of space and time as separate

things, we think of spacetime, a four-dimensional space.

In three dimensional space, two vectors ~p = (p1, p2, p3) and ~q =

(q1, q2, q3) have a dot product defined by

(p1, p2, p3) · (q1, q2, q3) = p1q1 + p2q2 + p3q3

In spacetime, two 4-vectors p = (p0, p1, p2, p3) and q = (q0, q1, q2, q3)

have a dot product defined by

(p0, p1, p2, p3) · (q0, q1, q2, q3) = p0q0 − p1q1 − p2q2 − p3q3

The negative signs in the spacetime dot product lead to the famous

effects of relativity (time dilation, length contraction, etc.) at speeds

close to the speed of light.
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Mathematically speaking, the fourth dimension isn’t

time.
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Mathematically speaking, the fourth dimension isn’t

time.

It’s anything we want it to be, depending on what we are modeling.

In fact, in pure mathematical terms we can think of four-dimensional

geometry, independent of any physical model.

The mathematical idea of a fourth dimension predates Einstein by

many years–back to the 1840s at least.
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Let’s begin with an easy problem:
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Let’s begin with an easy problem: rotate a point (x, y) counter-

clockwise through an angle θ.

(x,y)θ(x’,y’)
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Modern solution: represent (x, y) as a column vector and multiply

by an orthogonal matrix:

[
x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
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Modern solution: represent (x, y) as a column vector and multiply

by an orthogonal matrix:

[
x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]

so that the new coordinates are

x′ = (cos θ)x− (sin θ)y,

y′ = (sin θ)x + (cos θ)y,

which we can check to be correct by trigonometry.
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1830’s solution: represent (x, y) as a complex number:

θ x + yix’ + y’i
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1830’s solution: represent (x, y) as a complex number:

θ x + yix’ + y’i

(x, y) 7→ x + yi
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1830’s solution: represent (x, y) as a complex number:

θ x + yix’ + y’i

(x, y) 7→ x + yi

and multiply x + yi by the complex number eiθ = cos θ + sin θi:

x′ + y′i = (cos θ + sin θi)(x + yi)
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x′ + y′i = (cos θ + sin θi)(x + yi)

= (cos θ)x− (sin θ)y + ((sin θ)x + (cos θ)y)i
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x′ + y′i = (cos θ + sin θi)(x + yi)

= (cos θ)x− (sin θ)y + ((sin θ)x + (cos θ)y)i,

so that the new coordinates x′ and y′ are

x′ = (cos θ)x− (sin θ)y,

y′ = (sin θ)x + (cos θ)y,

just as we found with the matrix equation.
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x′ + y′i = (cos θ + sin θi)(x + yi)

= (cos θ)x− (sin θ)y + ((sin θ)x + (cos θ)y)i,

so that the new coordinates x′ and y′ are

x′ = (cos θ)x− (sin θ)y,

y′ = (sin θ)x + (cos θ)y,

just as we found with the matrix equation.

Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?
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Sir William Rowan Hamilton

Born in 1805 in Dublin, Ireland
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Royal Astronomer of Ireland

1827 - 1834: developed geometric theory of optics

1834 - 1835: extended this to Hamiltonian theory of dynamics

1835: knighted
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Sir William Rowan Hamilton

Born in 1805 in Dublin, Ireland

Could read Latin, Greek, and Hebrew at the age of five

1823: entered Trinity College, Dublin

1827: elected Andrewes Professor of Astronomy at Trinity and

Royal Astronomer of Ireland

1827 - 1834: developed geometric theory of optics

1834 - 1835: extended this to Hamiltonian theory of dynamics

1835: knighted

1843: discovered quaternions, dedicated most of his remaining

years to developing this theory

Died in 1865 in Dunsink, Ireland
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Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?

By analogy with the complex numbers, these hypercomplex num-

bers (if they exist) should have the following properties:
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for three dimensions what complex numbers do for two dimensions?

By analogy with the complex numbers, these hypercomplex num-
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• every nonzero number q should have an inverse q−1;
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Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?

By analogy with the complex numbers, these hypercomplex num-

bers (if they exist) should have the following properties:

• every nonzero number q should have an inverse q−1;

• the norm (i.e. magnitude) should follow the product rule

|pq| = |p||q|
for all numbers p and q.
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Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?

By analogy with the complex numbers, these hypercomplex num-

bers (if they exist) should have the following properties:

• every nonzero number q should have an inverse q−1;

• the norm (i.e. magnitude) should follow the product rule

|pq| = |p||q|
for all numbers p and q.

• rotations in three dimensional space should be represented by

multiplication of hypercomplex numbers
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Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?

How many dimensions should these hypercomplex numbers have?
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Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?

How many dimensions should these hypercomplex numbers have?

Hamilton considered triplets of the form

p = a + bi + cj

= a1 + bi + cj
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for three dimensions what complex numbers do for two dimensions?

How many dimensions should these hypercomplex numbers have?

Hamilton considered triplets of the form

p = a + bi + cj
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i2 = j2 = −1.
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Hamilton (1832): can we find hypercomplex numbers that do

for three dimensions what complex numbers do for two dimensions?

How many dimensions should these hypercomplex numbers have?

Hamilton considered triplets of the form

p = a + bi + cj

= a1 + bi + cj

with

i2 = j2 = −1.

He defined the norm of such a number as

|p| =
√

a2 + b2 + c2, (1)

and in analogy with the complex numbers required that

|pq| = |p||q|, (2)

for any two triplets p, q.
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Question: what is ij?
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Question: what is ij?

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij

using the laws of (complex) addition and multiplication.
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(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij

using the laws of (complex) addition and multiplication.

The norm of this number is
√

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2 + extra term

where the extra term comes from the coefficient of ij.
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(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij

using the laws of (complex) addition and multiplication.

The norm of this number is
√

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2 + extra term

where the extra term comes from the coefficient of ij.
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|a1 + bi + cj||a1 + bi + cj| = a2 + b2 + c2
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Question: what is ij?

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij

using the laws of (complex) addition and multiplication.

The norm of this number is
√

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2 + extra term

where the extra term comes from the coefficient of ij.

However,

|a1 + bi + cj||a1 + bi + cj| = a2 + b2 + c2

=
√

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2

so the product rule (2) which requires that

|(a1 + bi + cj)2| = |a1 + bi + cj||a1 + bi + cj|
seems to require that ij = 0.
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Question: what is ij?

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij (3)

using the laws of (complex) addition and multiplication.

The norm of this number is
√

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2 + extra term

where the extra term comes from the coefficient of ij.

However,

|a1 + bi + cj||a1 + bi + cj| = a2 + b2 + c2

=
√

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2

so the product rule (2) which requires that

|(a1 + bi + cj)2| = |a1 + bi + cj||a1 + bi + cj|
seems to require that ij = 0.

“Behold me therefore tempted for a moment to fancy that ij = 0. But this seemed odd
and uncomfortable....” – Hamilton to John Graves, 17 Oct 1843.
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Hamilton struggled with this for years.

“Every morning in the early part of [October 1843], on my coming down to breakfast, your
(then) little brother William Edwin, and yourself, used to ask me: ‘Well, Papa, can you
multiply triplets?’ Whereto I was always obliged to reply, with a sad shake of the head: ‘No,
I can only add and subtract them.’ ” – Hamilton to his eldest son, 1865.
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look at his calculations and realized that
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is actually
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Sometime between 1834 and 1843 Hamilton took a very careful

look at his calculations and realized that

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij

is actually

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + bc(ij + ji).
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Hamilton struggled with this for years.

“Every morning in the early part of [October 1843], on my coming down to breakfast, your
(then) little brother William Edwin, and yourself, used to ask me: ‘Well, Papa, can you
multiply triplets?’ Whereto I was always obliged to reply, with a sad shake of the head: ‘No,
I can only add and subtract them.’ ” – Hamilton to his eldest son, 1865.

Sometime between 1834 and 1843 Hamilton took a very careful

look at his calculations and realized that

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + 2bcij

is actually

(a1 + bi + cj)2 = (a2 − b2 − c2)1 + 2abi + 2acj + bc(ij + ji).

Thus the troublesome last term would be eliminated if ji = −ij; that

is, if he discarded the commutative law of multiplication.

(No one had ever seriously considered this before.)
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Hamilton named this product k = ij = −ji. Since he was looking

for a way to multiply triplets, he expected that

k = a1 + bi + cj

where a, b, and c were real numbers.
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Hamilton named this product k = ij = −ji. Since he was looking

for a way to multiply triplets, he expected that

k = a1 + bi + cj

where a, b, and c were real numbers.

With hindsight, it’s easy to prove that this is impossible. But Hamil-

ton wasn’t looking for an impossibility proof. So he kept struggling

with the problem.
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Hamilton named this product k = ij = −ji. Since he was looking

for a way to multiply triplets, he expected that

k = a1 + bi + cj

where a, b, and c were real numbers.

With hindsight, it’s easy to prove that this is impossible. But Hamil-

ton wasn’t looking for an impossibility proof. So he kept struggling

with the problem.

The breakthrough came on 16 October 1843.
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Sometime in the course of his investigations, Hamilton realized that

he could think of k as defining a new spatial direction–he “jumped

with k into a fourth dimension.”

In modern jargon: k is linearly independent of 1, i and j.
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Sometime in the course of his investigations, Hamilton realized that

he could think of k as defining a new spatial direction–he “jumped

with k into a fourth dimension.”

In modern jargon: k is linearly independent of 1, i and j.

So then what should k2 be?
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On 16 October 1843, Hamilton and his wife were walking to a

meeting of the Royal Irish Academy in Dublin and came up to the

Brougham Bridge. “...I then and there felt the galvanic circuit of

thought closed, and the sparks which fell from it were the fundamen-

tal equations between i, j, k...”
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On 16 October 1843, Hamilton and his wife were walking to a

meeting of the Royal Irish Academy in Dublin and came up to the

Brougham Bridge. “...I then and there felt the galvanic circuit of

thought closed, and the sparks which fell from it were the fundamen-

tal equations between i, j, k...”

i2 = j2 = k2 = ijk = −1 (4)

jk = i = −kj

ki = j = −ik

ij = k = −ji (5)
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Hamilton had discovered a set of four-dimensional hypercomplex

numbers

{q01 + q1i + q2j + q3k|q0, . . . , q4 ∈ R}.
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With multiplication rules (4) and (5) the quaternions form a self-

consistent division algebra.
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Hamilton had discovered a set of four-dimensional hypercomplex

numbers

{q01 + q1i + q2j + q3k|q0, . . . , q4 ∈ R}.
He called them quaternions.

With multiplication rules (4) and (5) the quaternions form a self-

consistent division algebra.

q = q01︸︷︷︸
“scalar”

+ q1i + q2j + q3k︸ ︷︷ ︸
“pure quaternion”
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Hamilton had discovered a set of four-dimensional hypercomplex
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Hamilton had discovered a set of four-dimensional hypercomplex

numbers

{q01 + q1i + q2j + q3k|q0, . . . , q4 ∈ R}.
He called them quaternions.

With multiplication rules (4) and (5) the quaternions form a self-

consistent division algebra.

q = q01︸︷︷︸
“scalar”

+ q1i + q2j + q3k︸ ︷︷ ︸
“vector”

= q01 + ~q where ~q = q1i + q2j + q3k.

“Vector is a useless survival, or offshoot from quaternions, and has never been of the slightest

use to any creature.” – Lord Kelvin, 1896.
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Multiplication of quaternions

p = p01 + p1i + p2j + p3k

q = q01 + q1i + q2j + q3k

63



Multiplication of quaternions

p = p01 + p1i + p2j + p3k

q = q01 + q1i + q2j + q3k

pq = (p0q0 − p1q1 − p2q2 − p3q3)1

+ (p0q1 + p1q0 + p2q3 − p3q2)i

+ (p0q2 + p2q0 + p3q1 − p1q3)j

+ (p0q3 + p3q0 + p1q2 − p2q1)k

–somewhat intimidating at first glance!
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Multiplication of quaternions

p = p01 + p1i + p2j + p3k

q = q01 + q1i + q2j + q3k

pq = (p0q0 − p1q1 − p2q2 − p3q3)1

+ (p0q1 + p1q0 + p2q3 − p3q2)i

+ (p0q2 + p2q0 + p3q1 − p1q3)j

+ (p0q3 + p3q0 + p1q2 − p2q1)k

–somewhat intimidating at first glance!

A simpler case–multiplying two pure vectors–gives some insight.
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = (p1i + p2j + p3k)(q1i + q2j + q3k)
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = (p1i + p2j + p3k)(q1i + q2j + q3k)

= −(p1q1 + p2q2 + p3q3)1 + (p2q3 − p3q2)i− (p1q3 − p3q1)j + (p1q2 − p2q1)k
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = (p1i + p2j + p3k)(q1i + q2j + q3k)

= − (p1q1 + p2q2 + p3q3)︸ ︷︷ ︸
~p · ~q

1 + (p2q3 − p3q2)i− (p1q3 − p3q1)j + (p1q2 − p2q1)k︸ ︷︷ ︸
~p×~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = (p1i + p2j + p3k)(q1i + q2j + q3k)

= − (p1q1 + p2q2 + p3q3)︸ ︷︷ ︸
~p · ~q

1 + (p2q3 − p3q2)i− (p1q3 − p3q1)j + (p1q2 − p2q1)k︸ ︷︷ ︸
~p×~q

= −(~p · ~q)1 + ~p× ~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p01 + ~p)(q01 + ~q)
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p01 + ~p)(q01 + ~q)

= p0q01 + p0~q + q0~p + ~p~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p01 + ~p)(q01 + ~q)

= p0q01 + p0~q + q0~p + ~p~q

= p0q01 + p0~q + q0~p + (−~p · ~q)1 + ~p× ~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p01 + ~p)(q01 + ~q)

= p0q01 + p0~q + q0~p + ~p~q

= p0q01 + p0~q + q0~p + (−~p · ~q)1 + ~p× ~q

= (p0q0 − ~p · ~q)1 + p0~q + q0~p + ~p× ~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p01 + ~p)(q01 + ~q)

= p0q01 + p0~q + q0~p + ~p~q

= p0q01 + p0~q + q0~p + (−~p · ~q)1 + ~p× ~q

= (p0q0 − ~p · ~q)1 + p0~q + q0~p + ~p× ~q

= (p0q0 − p1q1 − p2q2 − p3q3)1 + p0~q + q0~p + ~p× ~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p0q0 − p1q1 − p2q2 − p3q3)1 + p0~q + q0~p + ~p× ~q
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Multiplying vectors

~p = p1i + p2j + p3k

~q = q1i + q2j + q3k

~p ~q = −(~p · ~q)1 + ~p× ~q

Multiplying quaternions (again)

p = p01 + p1i + p2j + p3k

= p01 + ~p

q = q01 + q1i + q2j + q3k

= q01 + ~q

pq = (p0q0 − p1q1 − p2q2 − p3q3)︸ ︷︷ ︸
Einstein’s dot product

1 + p0~q + q0~p + ~p× ~q
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Definition. The norm of a quaternion q = q01 + q1i + q2j + q3k

is

|q| =
√

q2
0 + q2

1 + q2
2 + q2

3. (6)

Definition. The conjugate of a quaternion q = q01+q1i+q2j+q3k

is

q̄ = q01− q1i− q2j− q3k. (7)
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Definition. The norm of a quaternion q = q01 + q1i + q2j + q3k

is

|q| =
√

q2
0 + q2

1 + q2
2 + q2

3. (8)

Definition. The conjugate of a quaternion q = q01+q1i+q2j+q3k

is

q̄ = q01− q1i− q2j− q3k. (9)

Note that

qq̄ = (q01 + q1i + q2j + q3k)(q01− q1i− q2j− q3k)

= q2
0 + q2

1 + q2
2 + q2

3
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Definition. The norm of a quaternion q = q01 + q1i + q2j + q3k

is

|q| =
√

q2
0 + q2

1 + q2
2 + q2

3. (10)

Definition. The conjugate of a quaternion q = q01+q1i+q2j+q3k

is

q̄ = q01− q1i− q2j− q3k. (11)

Note that

qq̄ = (q01 + q1i + q2j + q3k)(q01− q1i− q2j− q3k)

= q2
0 + q2

1 + q2
2 + q2

3

= |q|2
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Definition. The norm of a quaternion q = q01 + q1i + q2j + q3k

is

|q| =
√

q2
0 + q2

1 + q2
2 + q2

3. (12)

Definition. The conjugate of a quaternion q = q01+q1i+q2j+q3k

is

q̄ = q01− q1i− q2j− q3k. (13)

Note that

qq̄ = (q01 + q1i + q2j + q3k)(q01− q1i− q2j− q3k)

= q2
0 + q2

1 + q2
2 + q2

3

= |q|2

so every q 6= 0 has a multiplicative inverse

q−1 =
1

|q|2 q̄.
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Hamilton wanted to find an extension of the complex numbers that

would act on three-dimensional space the way complex numbers do

on two dimensions. Did he succeed?
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Recall that Hamilton wanted his new numbers to have the following

properties:

• every nonzero number q should have an inverse q−1;

• the norm (i.e. magnitude) should follow the product rule

|pq| = |p||q|
for all numbers p and q.

• rotations in three dimensional space can be represented by mul-

tiplication of hypercomplex numbers
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We just showed that every nonzero quaternion q 6= 0 has a multi-

plicative inverse

q−1 =
1

|q|2 q̄
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We just showed that every nonzero quaternion q 6= 0 has a multi-

plicative inverse

q−1 =
1

|q|2 q̄
A little algebra confirms that

|pq| = |p||q|
for any two quaternions p,q.

87



We just showed that every nonzero quaternion q 6= 0 has a multi-

plicative inverse

q−1 =
1

|q|2 q̄
A little algebra confirms that

|pq| = |p||q|
for any two quaternions p,q.

What about rotations?
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Every rotation in three-dimensional space is a rotation about an

axis defined by a unit vector ~u (Euler’s theorem).
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Every rotation in three-dimensional space is a rotation about an

axis defined by a unit vector ~u (Euler’s theorem).

A year after discovering quaternions, Hamilton found the formula

for rotating a vector ~v about an axis defined by a unit vector ~u.

To rotate ~v = v1i + v2j + v3k counterclockwise about ~u by an angle

θ, define the quaternion

q = cos
θ

2
1 + sin

θ

2
~u
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Every rotation in three-dimensional space is a rotation about an

axis defined by a unit vector ~u (Euler’s theorem).

A year after discovering quaternions, Hamilton found the formula

for rotating a vector ~v about an axis defined by a unit vector ~u.

To rotate ~v = v1i + v2j + v3k counterclockwise about ~u by an angle

θ, define the quaternion

q = cos
θ

2
1 + sin

θ

2
~u

and form the product

~v′ = q~v q−1
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Every rotation in three-dimensional space is a rotation about an

axis defined by a unit vector ~u (Euler’s theorem).

A year after discovering quaternions, Hamilton found the formula

for rotating a vector ~v about an axis defined by a unit vector ~u.

To rotate ~v = v1i + v2j + v3k counterclockwise about ~u by an angle

θ, define the quaternion

q = cos
θ

2
1 + sin

θ

2
~u

and form the product

~v′ = q~v q−1

= (cos
θ

2
1 + sin

θ

2
~u)~v (cos

θ

2
1− sin

θ

2
~u)
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

x

y

z

i + j
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

x

y

z

i + j

Matrix solution:

~v =




1

1

0







cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0



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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:

~v =




1

1

0







cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2 0

√
3

2

0 1 0

−
√

3
2 0 1

2







1

1

0



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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:

~v =




1

1

0







cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2 0

√
3

2

0 1 0

−
√

3
2 0 1

2







1

1

0


 =




1
2

1

−
√

3
2



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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:

~v =




1

1

0







cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2 0

√
3

2

0 1 0

−
√

3
2 0 1

2







1

1

0


 =




1
2

1

−
√

3
2




=
1

2
i + j−

√
3

2
k
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π/3

2
1 + sin

π/3

2
j
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π

6
1 + sin

π

6
j
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π

6
1 + sin

π

6
j

q~v q−1 = (cos
π

6
1 + sin

π

6
j)(i + j)(cos

π

6
1− sin

π

6
j)
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π

6
1 + sin

π

6
j

q~v q−1 = (cos
π

6
1 + sin

π

6
j)(i + j)(cos

π

6
1− sin

π

6
j)

= (

√
3

2
1 +

1

2
j)(i + j)(

√
3

2
1− 1

2
j)
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π

6
1 + sin

π

6
j

q~v q−1 = (cos
π

6
1 + sin

π

6
j)(i + j)(cos

π

6
1− sin

π

6
j)

= (

√
3

2
1 +

1

2
j)(i + j)(

√
3

2
1− 1

2
j)

= (

√
3

2
1 +

1

2
j)(

1

2
1 +

√
3

2
i +

√
3

2
j− 1

2
k)
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π

6
1 + sin

π

6
j

q~v q−1 = (cos
π

6
1 + sin

π

6
j)(i + j)(cos

π

6
1− sin

π

6
j)

= (

√
3

2
1 +

1

2
j)(i + j)(

√
3

2
1− 1

2
j)

= (

√
3

2
1 +

1

2
j)(

1

2
1 +

√
3

2
i +

√
3

2
j− 1

2
k)

=
1

2
i + j−

√
3

2
k
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Example: rotate ~v = i + j about the positive y-axis counter-

clockwise by π/3 radians.

Matrix solution:



cos π
3 0 sin π

3

0 1 0

− sin π
3 0 cos π

3







1

1

0


 =




1
2

1

−
√

3
2


 =

1

2
i + j−

√
3

2
k

Quaternion solution: axis vector ~u = j

q = cos
π

6
1 + sin

π

6
j

q~v q−1 =
1

2
i + j−

√
3

2
k
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:

• if we add an additional rotation of 2π to the angle θ, we obtain

cos
(θ + 2π)

2
1 + sin

(θ + 2π)

2
~u = cos (

θ

2
+ π)1 + sin (

θ

2
+ π)~u
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:

• if we add an additional rotation of 2π to the angle θ, we obtain

cos
(θ + 2π)

2
1 + sin

(θ + 2π)

2
~u = cos (

θ

2
+ π)1 + sin (

θ

2
+ π)~u

= − cos
θ

2
1− sin

θ

2
~u
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:

• if we add an additional rotation of 2π to the angle θ, we obtain

cos
(θ + 2π)

2
1 + sin

(θ + 2π)

2
~u = cos (

θ

2
+ π)1 + sin (

θ

2
+ π)~u

= − cos
θ

2
1− sin

θ

2
~u

= −q
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:

• if we add an additional rotation of 2π to the angle θ, we obtain

cos
(θ + 2π)

2
1 + sin

(θ + 2π)

2
~u = cos (

θ

2
+ π)1 + sin (

θ

2
+ π)~u

= − cos
θ

2
1− sin

θ

2
~u

= −q

• but this additional 2π results in the same rotation matrix:
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:

• if we add an additional rotation of 2π to the angle θ, we obtain

cos
(θ + 2π)

2
1 + sin

(θ + 2π)

2
~u = cos (

θ

2
+ π)1 + sin (

θ

2
+ π)~u

= − cos
θ

2
1− sin

θ

2
~u

= −q

• but this additional 2π results in the same rotation matrix (exam-

ple):



cos (θ + 2π) 0 sin (θ + 2π)

0 1 0

− sin (θ + 2π) 0 cos (θ + 2π)


 =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 .
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The factor 1
2 in the rotation quaternion q = cos θ

21 + sin θ
2~u has

the following effect:

• if we add an additional rotation of 2π to the angle θ, we obtain

cos
(θ + 2π)

2
1 + sin

(θ + 2π)

2
~u = cos (

θ

2
+ π)1 + sin (

θ

2
+ π)~u

= − cos
θ

2
1− sin

θ

2
~u

= −q

• but this additional 2π results in the same rotation matrix (exam-

ple):



cos (θ + 2π) 0 sin (θ + 2π)

0 1 0

− sin (θ + 2π) 0 cos (θ + 2π)


 =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 .

• Thus q and −q correspond to the same rotation matrix.

There are two quaternions for every rotation matrix.
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However, an additional rotation of 4π results in the same rotation

quaternion:

cos
(θ + 4π)

2
1 + sin

(θ + 4π)

2
~u = cos (

θ

2
+ 2π)1 + sin (

θ

2
+ 2π)~u
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However, an additional rotation of 4π results in the same rotation

quaternion:

cos
(θ + 4π)

2
1 + sin

(θ + 4π)

2
~u = cos (

θ

2
+ 2π)1 + sin (

θ

2
+ 2π)~u

= cos
θ

2
1 + sin

θ

2
~u
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However, an additional rotation of 4π results in the same rotation

quaternion:

cos
(θ + 4π)

2
1 + sin

(θ + 4π)

2
~u = cos (

θ

2
+ 2π)1 + sin (

θ

2
+ 2π)~u

= cos
θ

2
1 + sin

θ

2
~u

Thus rotations of 360 degrees (2π radians) are somehow

different in the quaternion world than rotations of 720

degrees (4π radians).
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Rotations of 360 degrees (2π radians) are somehow

different in the quaternion world than rotations of 720

degrees (4π radians).

Which picture is physically correct?

If there is no physical difference between rotations of 360 degrees

and rotations of 720 degrees, the matrix formulation of rotations is

correct.

In order for the quaternion picture to be correct, there would have

to be some detectable difference between a 360 degree rotation and

a 720 degree rotation.
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The coffee cup trick
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The sphere and the hypersphere

In three-dimensional space, the set of vectors defined by

S2 = {p1i + p2j + p3k | p2
1 + p2

2 + p2
3 = 1 }

is the 2-dimensional unit sphere centered at the origin.
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The sphere and the hypersphere

In three-dimensional space, the set of vectors defined by

S2 = {p1i + p2j + p3k | p2
1 + p2

2 + p2
3 = 1 }

is the 2-dimensional unit sphere centered at the origin.

In the four-dimensional space of quaternions, the set of unit quater-

nions

S3 = {q01 + q1i + q2j + q3k | q2
0 + q2

1 + q2
2 + q2

3 = 1 }
is called the hypersphere.
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The sphere and the hypersphere

It’s easy to show that every rotation quaternion q = cos θ
21+sin θ

2~u

is a unit quaternion and vice versa. Thus,

S3 = {q01 + q1i + q2j + q3k | q2
0 + q2

1 + q2
2 + q2

3 = 1 }

= {cos
θ

2
1 + sin

θ

2
~u | 0 ≤ θ ≤ 4π, ~u unit vector }
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The sphere and the hypersphere

It’s easy to show that every rotation quaternion q = cos θ
21+sin θ

2~u

is a unit quaternion and vice versa.

Thus the set of rotation quaternions is the hypersphere.

3 x 3 rotation matrices

2 −> 1

hypersphere

rotation
quaternions

of
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The sphere and the hypersphere

Every unit quaternion q = cos θ
21 + sin θ

2~u in the hypersphere

projects to its unit vector component ~u in the unit sphere.

The set of unit quaternions corresponding to the equator of the unit

sphere is a torus embedded in four-dimensional space. What does it

look like?
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Who cares?

Three groups of professionals use quaternions instead of 3x3 rota-

tion matrices:
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Who cares?

Three groups of professionals use quaternions instead of 3x3 rota-

tion matrices in the following applications:

• Spacecraft attitude control: NASA encodes the shuttle or-

biter’s attitude in space as a quaternion

– faster computations

– efficient use of computer memory
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Who cares?

Three groups of professionals use quaternions instead of 3x3 rota-

tion matrices in the following applications:

• Spacecraft attitude control: NASA encodes the shuttle or-

biter’s attitude in space as a quaternion

– faster computations

– efficient use of computer memory

• Quantum mechanics: the unitary operators for a spin 1/2

particle are unit quaternions
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Who cares?

Three groups of professionals use quaternions instead of 3x3 rota-

tion matrices in the following applications:

• Spacecraft attitude control: NASA encodes the shuttle or-

biter’s attitude in space as a quaternion

– faster computations

– efficient use of computer memory

• Quantum mechanics: the unitary operators for a spin 1/2

particle are unit quaternions

• Computer graphics / game engines: for the same reasons

as NASA, plus:

– smoother motion interpolation in rotation of objects

– avoids distortion (shear) due to roundoff error
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Higher dimensions

We’ve already seen that quaternions, discovered in 1843, have ap-

plications in relativity theory and quantum mechanics.
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We’ve already seen that quaternions, discovered in 1843, have ap-

plications in relativity theory and quantum mechanics.

• Einstein’s general theory of relativity is very good for describing

and predicting the effects of gravity.

• Quantum mechanics is amazingly good at describing and pre-

dicting the effects of the other three forces in nature.
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Higher dimensions

We’ve already seen that quaternions, discovered in 1843, have ap-

plications in relativity theory and quantum mechanics.

• Einstein’s general theory of relativity is very good for describing

and predicting the effects of gravity.

• Quantum mechanics is amazingly good at describing and pre-

dicting the effects of the other three forces in nature.

However – these two theories are mathematically incompatible!

Finding a theory that unifies them is the outstanding problem in

physics. Some physicists believe the answer involves even higher di-

mensions.
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Higher dimensions and string theory

In what has been called “string theory” (or M-theory), elementary

particles are represented by “strings” which move in a space of 10

(or perhaps 11) dimensions.

At every point in 4-dimensional spacetime, string theory postulates

an additional 6-dimensional space called a Calabi-Yau manifold.
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Higher dimensions and string theory

In what has been called “string theory” (or M-theory), elementary

particles are represented by “strings” which move in a space of 10

(or perhaps 11) dimensions.

At every point in 4-dimensional spacetime, string theory postulates

an additional 6-dimensional space called a Calabi-Yau manifold.

These extra dimensions are too small to be detected by human senses,

or by any technical means we now possess.
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So why the extra dimensions?

• The extra dimensions, while small, give enough extra room for

effects that would reconcile relativity and quantum mechanics
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So why the extra dimensions?

• The extra dimensions, while small, give enough extra room for

effects that would reconcile relativity and quantum mechanics

• Gravity is a natural consequence of the field equations

• They let people make cool science programs for PBS
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Looking back and ahead

Edward Witten (IAS) once said, “String theory is a piece of 21st

century physics that somehow dropped into the 20th century.”

Quaternions are a piece of 20th century mathematics that dropped

into the 19th century, thanks to the genius of Hamilton.

The problems that quaternions can solve weren’t foreseen in the 19th

century... we don’t know yet what the 10-dimensional mathematics

of string theory may lead to.

135


