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Definitions

• The graph G = (V , E) is nonempty, undirected, with
|V | = n.

• The mapping f : V → {1, 2, . . . , n} is an ordering of V .
• The weight function w : E → Z+ is

w(uv) = min{f (u), f (v)}.
• The min-sum vertex cover number (msvc number) of G is

µs(G) = min
∑
e∈E

w(e), where the minimum is taken over all

n! orderings f (V ). We refer to µs(G) as the cost of G.
• A cost set Sf for a given f (V ) is defined by

Sf = {u ∈ V |∃e ∈ E such that w(e) = f (u)}.
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Motivation: Data Migration

• The msvc problem is motivated by a data migration
problem. (e.g., Feige, Lovász, Tetali (2004); Kim (2004))

• The graph version: vertices represent servers, with label
on vertex s dictating time at which server s moves data.

• Edges represent file transfers. Unweighted problem (unit
edge weights) assumes constant-time transfers.

• Goal: minimize average service delay over all transfers.
• NP-Complete, even with uniform edge weights.
• Our initial focus is on msvc numbers of garden-variety

graph classes.
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Concrete Examples
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Concrete Examples

P5:

P6:

µs(P6) = 9

t4 tg1 t5 tg2 t6 tg3

1 1 2 2

µs(P5) = 6

t3 tg1 t4 tg2 t5

11 2 2 3



Immediate Bounds

• A cost set must be a vertex cover, so β(G) ≤ µs(G).
(This is sharp only for K2.)

• A connected graph G on n vertices has at least n − 1
edges, so n − 1 ≤ µs(G). (Sharp for K1,n−1.)

• Given a connected graph G on n vertices, the vertex
labeled i in any optimal cost set contributes w(e) = f (i) to
at most n − i edges (1 ≤ i < n), so

µs(G) ≤
n−1∑
i=1

i(n − i) =
n3 − n

6
. (Sharp for Kn)
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Some Exact Results

• µs(Pn) =

⌊
n2

4

⌋
. In the case n = 2k + 1, the independent

set of k internal vertices is an msvc cost set; in the case
n = 2k , we use k − 1 internal vertices and one pendant.
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P6:

µs(P6) = 9
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Some Exact Results

• µs(Cn) =

⌊
(n + 1)2

4

⌋
.
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Some Exact Results

• If a ≤ b, then µs(Ka,b) = b
a∑

i=1

i =
ba(a + 1)

2
.

• If a ≤ b, then the double star (S(a, b)) has
µs(S(a, b)) = 2a + b − 2.

t
t

t
tg2

t

t
gt1

t

t

t
t

��
�

H
HH

�
�
�
��
B

B
B

BB

A
A
A

�
�
�

µs(S(5, 6)) = 14



Some Exact Results

• If a ≤ b, then µs(Ka,b) = b
a∑

i=1

i =
ba(a + 1)

2
.

• If a ≤ b, then the double star (S(a, b)) has
µs(S(a, b)) = 2a + b − 2.

t
t

t
tg2

t

t
gt1

t

t

t
t

��
�

H
HH

�
�
�
��
B

B
B

BB

A
A
A

�
�
�

µs(S(5, 6)) = 14



Dark Days for the Greedy Approach
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Not Just Any Independent Set Will Do

• If G has an independent vertex cover, an upper bound on
µs(G) can be computed, but not every independent vertex
cover constitutes a minimum cost set.
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A General Result for Regular Graphs

• Suppose G is k -regular, with k ≥ 2. Then

k
α∑

i=1

i =
kα(α + 1)

2
≤ µs ≤

kβ(β + 1)

2
= k

β∑
i=1

i ,

where α = α(G) is the independence number of G and
β = β(G) is the vertex covering number of G.

• This gives an exact result when α(G) = β(G), in which
case

µs(G) =
kn(n + 1)

2
.
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Examples: Regular Graphs

• µs(Kn,n) =
n3 + n2

2
.

• For n ≥ 2, µs(Qn) = n2n−2 (
2n−1 − 1

)
.

• For n ≥ 2, the prism G ∼= Cn ×K2 has µs(G) =
3n(n + 1)

2
if

n is even, and µs(G) =
3n2 + 3n + 2

2
if n is odd.



Examples: Regular Graphs

• µs(Kn,n) =
n3 + n2

2
.

• For n ≥ 2, µs(Qn) = n2n−2 (
2n−1 − 1

)
.

• For n ≥ 2, the prism G ∼= Cn ×K2 has µs(G) =
3n(n + 1)

2
if

n is even, and µs(G) =
3n2 + 3n + 2

2
if n is odd.



Examples: Regular Graphs

• µs(Kn,n) =
n3 + n2

2
.

• For n ≥ 2, µs(Qn) = n2n−2 (
2n−1 − 1

)
.

• For n ≥ 2, the prism G ∼= Cn ×K2 has µs(G) =
3n(n + 1)

2
if

n is even, and µs(G) =
3n2 + 3n + 2

2
if n is odd.



The Petersen Graph
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• The proof that the Petersen graph has msvc number 48
provides a nice illustration of determining the msvc number
of a graph for which we have no available formula. We
consider the numbers of vertices in a cost set that cover
three edges.



The Petersen Graph
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• If Sf contains four independent vertices with available
degree three, we have a matching of size three left over, so
Cost(f ) = 3 + 6 + 9 + 12 + 5 + 6 + 7 = 48.



The Petersen Graph
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• If we use three independent vertices with available degree
three, we have a six edges left over, so
Cost(f ) ≥ 3 + 6 + 9 + 8 + 10 + 12 ≥ 48; this is sharp.



The Petersen Graph
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• If we use fewer independent vertices with available degree
three, the cost rises. For example, if Sf contains only two
vertices of degree three, there are nine more edges, and
Cost(f ) ≥ 3 + 6 + 6 + 8 + 10 + 12 + 7 = 52. So no matter
what mapping f we choose, Cost(f ) ≥ 48.



µs(PG) = 48
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• Cost(f ) = µs(PG) = 48.



Biregular Graphs

• A graph G = (V , E) is biregular if V = V1 + V2, where V1 is
regular of degree j and V2 is regular of degree k for some
j , k . We call G strictly biregular if j 6= k .

• A graph G = (X , Y , E) is bipartite biregular if G is both
bipartite and biregular.

• If G = (X , Y , E) is bipartite biregular, and if the degree
partition coincides with the partition V = X + Y , then
j |X | = k |Y |, and it follows that if j ≥ k , then

µs(G) = j
|X |∑
i=1

i ≤ k
|Y |∑
i=1

i .

• Special case: If G = (X , Y , E) is regular of degree k and

has 2n vertices, then µs(G) =
kn(n + 1)

2
.
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Generalized Petersen Graphs

The generalized Petersen Graph P(n, k) for n ≥ 5 has
V = {xi , yi |0 ≤ i ≤ n − 1} and E = {xixi+1, yiyi+k , xiyi}, where
the subscripts are expressed modulo n. The best-known
instance is P(5, 2), the Petersen graph. It turns out that
µs(P(5, 2)) = 48, but our focus is on µs(P(n, k)) in general. We
consider only k ≤ b(n − 1)/2c.
• Two elementary results about P(n, k):

• P(n, k) is 3-regular.
• P(n, k) is bipartite if and only if n is even and k is odd.

• By our result on regular bipartite graphs, if n is even and k

is odd, then µs(P(n, k)) =
3n(n + 1)

2
.
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Example: P(8, 3)

P(8, 3)):

µs(P(8, 3)) = 108

=
3 · 8 · 9
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Perfection

• The generalized Petersen graphs, and some others that
we looked at during many discussions of the msvc
problem, are interesting in their own right. Does it make
sense to break ground on a new problem and on an
unfamiliar class of graphs simultaneously?

• In search of a well-understood family of graphs, rich in
structure, why look further than subclasses of the perfect
graphs?

• A graph G is perfect if χ(H) = ω(H) for all induced
subgraphs H ⊆ G.

• Many problems that are NP-complete in general are quite
easily solved on numerous classes of perfect graphs, so it
seems natural to look at perfect graphs in the context of
mscv.
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Biregular Caterpillars

We already have results for paths, which are bipartite and
therefore perfect. What about caterpillars? We begin with
biregular caterpillars. With three consecutive vertices of
maximum degree, a complication arises. Two of the possible
labelings agree, but are not optimal.
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Biregular Caterpillars
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= µs(G).

• In one of the suboptimal labelings, we prematurely labeled
a vertex of maximum degree that was adjacent to two
others that also had maximum degree. In the other, we
assigned the next available label to a vertex of maximum
degree that already had its degree effectively reduced in
the previous step.

• How do we avoid this?
• Enter the interval graphs.



Biregular Caterpillars

G:t
1
t
t

3
t
t

2
t
t

t
∑

e

g(e) = 12

= µs(G).

• In one of the suboptimal labelings, we prematurely labeled
a vertex of maximum degree that was adjacent to two
others that also had maximum degree. In the other, we
assigned the next available label to a vertex of maximum
degree that already had its degree effectively reduced in
the previous step.

• How do we avoid this?
• Enter the interval graphs.



Biregular Caterpillars

G:t
1
t
t

3
t
t

2
t
t

t
∑

e

g(e) = 12

= µs(G).

• In one of the suboptimal labelings, we prematurely labeled
a vertex of maximum degree that was adjacent to two
others that also had maximum degree. In the other, we
assigned the next available label to a vertex of maximum
degree that already had its degree effectively reduced in
the previous step.

• How do we avoid this?
• Enter the interval graphs.



Intersection Graphs

• A graph G = (V , E) is an intersection graph if the vertices
can be labeled as sets, with an edge between vertices X
and Y iff X ∩ Y 6= ∅.
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• An interval graph is the intersection graph of a family of
intervals on the real line.
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Interval Elimination Orderings

• Every interval graph can be assigned an interval
elimination ordering, which is a labeling v1, v2, . . . , vn,
where the labels in N−(vi) = {vj |j = i or vivj ∈ E} occur
consecutively [Laskar & Jamison].

t1

t
3

t2
t4

t
5

t6
t7

Q
Q

Q
QQ

�
�

�
��Q

Q
Q

QQ

�
�

�
��Q

Q
Q

QQ

�
�

�
��Q

Q
Q

QQ

�
�

�
��



An Algorithm for Biregular Caterpillars

• We now can give an algorithm for finding the msvc number
of a biregular caterpillar T .

• We start by constructing an IEO for T . Among all vertices
of maximum degree, choose the vertex, say v , with
smallest index in the IEO. Label this vertex with the
smallest available label (initially 1). Now apply the same
procedure recursively to T − {v}.
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• A caterpillar G is an interval tree, so we can construct an

IEO for G.
• By choosing a vertex of maximum degree with smallest

label in the IEO, we avoid the “betweenness” problem.



G:

v1

t
v2

v3

t
t

v5

t
v4t

v8

t
v6t

v7

t
• A caterpillar G is an interval tree, so we can construct an

IEO for G.
• By choosing a vertex of maximum degree with smallest

label in the IEO, we avoid the “betweenness” problem.



Caterpillars in General

• Armed with the preceding result, we have a procedure for
arbitrary caterpillars.



Split Graphs

• A split graph is a graph G = (V , E) for which V can be
partitioned as V = V1 + V2, where G[V1] is a clique and
G[V2] is an independent set. Split graphs are perfect.

• Here V1 = {a, b, c, d} and V2 = {e, f , g, h, i , j}.
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Threshold Graphs

• A threshold graph is a highly structured split graph
G = (V , E) for which several characterizations exist.
Threshold graphs are perfect.
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A Useful Characterization of Threshold Graphs

• The vertex set of a threshold graph with distinct positive
degrees d1 ≤ d2 ≤ · · · ≤ dm can be partitioned as
V = V1 + V2 + · · ·+ Vm, where Vi contains all vertices of
degree di . For x ∈ Vi and y ∈ Vj , xy ∈ E iff i + j > m.

• Threshold graphs are split graphs.
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V4 = {e, g}
V3 = {c, h}
V2 = {d , f}
V1 = {a}
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An Algorithm for Split Graphs

• We can compute the msvc number of a split graph in
polynomial time.

• The msvc number of a split graph is a function of its degree
sequence.

Theorem
Let G = (V , E) be a split graph on n vertices. Let
V = {v1, v2, . . . , vn}, and without loss of generality assume that
i < j → deg(vi) ≥ deg(vj). Let f be the labeling of V defined by
f (vi) = i . Then f is an msvc labeling of G.
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An Algorithm for Split Graphs

• The proof of the theorem is simple. The split property is
hereditary, so it suffices to show that any labeling that
assigns 1 to a vertex of maximum degree achieves a better
result than any labeling that assigns 1 to a vertex of
smaller degree.

• The algorithm is simple, too:
• Sort the vertices in nonincreasing order by degree.
• Iterate: Assign the smallest available label to the first

available vertex. Update the degree sequence.
• When the next degree in the sequence is zero, stop.
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A Formula for the msvc Number of a Split Graph

• As an immediate corollary, we have a formula for the msvc
number of a split graph in terms of its degree sequence.

Corollary

Let G = (V , E) be a split graph. Let d1 ≥ d2 ≥ · · · ≥ d|V | be the
degree sequence of G. Let k = max{i |di − i + 1 > 0}. Then the
msvc number of G is

µs(G) =
k∑

i=1

i(di − i + 1).
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An msvc Labeling of H
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µs(H) = 1 · 6 + 2 · 4 + 3 · 3 + 4 · 1
= 27.



An msvc Labeling of G
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µs(G) = 1 · 7 + 2 · 5 + 3 · 4 + 4 · 1
= 33.



Unit Interval Graphs

G:
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• A graph G is unit interval if it is the intersection of a family
of unit-length intervals on the real line. The interval
elimination ordering of G is an interval elimination ordering
in both directions: if we interchange labels i and n − i , we
have another interval elimination ordering (called
bicompatible). This existence of a BEO is characteristic of
unit interval graphs [Laskar & Jamison].



Unit Interval Graphs
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• A vertex v is simplicial if N[v ] is a clique. Just as the focus
in caterpillars is on the internal vertices, the focus in UI
graphs is on the nonsimplicial vertices.

• This graph has six nonsimplicial vertices, labeled
3, 4, 5, 6, 7, 8. All have degree 5. Vertices 5 and 6 are in the
middle.
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• A vertex v is simplicial if N[v ] is a clique. Just as the focus
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Unit Interval Graphs

G:
Cost(f ) = 65 t
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• If we assign the least label to vertex 5 (or 6), we decrease
the potential of all of the remaining five nonsimplicial
vertices.

• No matter what we do next, we end up with a suboptimal
result.
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Unit Interval Graphs
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• If we instead assign the least label to the first nonsimplicial
vertex in the BEO, we decrease the potential of only three
of the remaining nonsimplicial vertices.

• The search for a vertex of maximum degree now leads to a
nonsimplicial vertex that was unaffected by the first
assignment.
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• If we instead assign the least label to the first nonsimplicial
vertex in the BEO, we decrease the potential of only three
of the remaining nonsimplicial vertices.

• The search for a vertex of maximum degree now leads to a
nonsimplicial vertex that was unaffected by the first
assignment.



An Optimal Labeling

G:
µs(G) = 61
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• Continuing in this fashion, guided by the elimination
ordering, we attain an msvc labeling.



Summing Up

• The known classes of perfect graphs are rich in structure
and attributes that assist in obtaining results. Many have
one or more of the following:

• Forbidden subgraph characterizations.
• Elimination orderings.
• Characterizations as intersection graphs of well-defined

families of sets.
• Characterizations in terms of vertex degrees.
• Polyhedral characterizations.

• Many have nice algorithmic properties, enabling us to
apply a constructive approach.
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What’s next?

• Interval graphs in general are only slightly more
complicated in structure than unit interval graphs and
caterpillars.

• There are several hundred known classes of perfect
graphs. Many of these might allow polynomial-time
algorithms and/or closed-form expressions for computing
the msvc number.

• The generalized Petersen graphs are still out there.
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