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INTRODUCTION 
 
Linear algebra, ordinary differential equations, and multi-variable calculus hold an important 
position collectively within the standard second-year curriculum for many undergraduate science, 
mathematics, engineering, and technology (SMET) students, particularly those in engineering and 
the physical and applied mathematical sciences. Although many natural interconnections exist 
among these three subjects – with ideas and techniques from each in constant use in the others – 
their traditional organization and “delivery” as distinct courses can create artificial barriers among 
the subjects in the minds of the students. If we are to break down boundaries between disciplines 
for student learning, perhaps we should first break down subject boundaries within our own 
discipline. In this paper we explore an organizing framework consisting of two primary themes and 
several supporting conceptual axes, which we believe can promote an interdisciplinary approach to 
teaching and learning the central ideas from these three subjects. 
 
CURRENT SETTING 
 
Recognizing the centrality of the three subjects mentioned above, the importance of using 
motivating applications, and the opportunities for new pedagogical approaches afforded by 
advances in computational technology, the mathematical sciences community has been engaged 
over a number of years in various efforts to improve the teaching of these courses and student 
learning of this subject matter. For example, faculty enhancement workshops such as Computer 
Aided Instruction in Linear Algebra and Ordinary Differential Equations in 1990 [29] and the  
ATLAST [14] and CODE-E consortia  [6] both begun in 1992, have engaged large numbers of 
faculty across the country in rethinking their pedagogical approaches. More recently, a number of 
curriculum development projects have produced new teaching and learning materials for these 
three subjects. These include a MathCad based laboratory approach to linear algebra by Porter and 
Hill [22], the Internet Differential Equations Activities project [15] and the text from the BU 
Dynamical Systems project [4] in differential equations, and the Calculus  Consortium at 
Harvard's text Multivariable Calculus [16] and Cheung's work at Boston College with Maple  and 
multivariable calculus [7]. Some of these efforts have led in turn to “second generation” faculty 
enhancement workshops and conferences as part of the dissemination work of these various 
projects. Additional projects and innovations are listed in the references. 
While much progress has been made, several important challenges still exist, which argue for a 
conceptual and contextual unification of subject matter. Firstly, depending on a student’s major 
requirements, the sequence in which students enroll in these courses can be quite varied; and 
institutions differ greatly in the frequency and the order in which these courses are offered. 
Versions of these courses are also taught by other departments for their own majors. For example, 
vector calculus  courses for engineers are often taught under the name “Engineering Analysis”. 
While this cafeteria plan of courses may maximize choice, it also encourages students’conceptual 
learning to remain disconnected. Subject matter is “covered” repetitively, but not revisited in a 
coherent way; and opportunities to take advantage of and reinforce the synergistic interconnections 
                                                                 
1 On leave from the Department of Mathematics, University of New Hampshire, Durham, NC 03824. The 
views expressed in this paper are entirely those of the author, and do not reflect an official NSF position. 
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among these three important mathematical subjects are lost. Secondly, opportunities to make 
explicit linkages with application areas encountered by students in their major-specific courses are 
not generally exploited. Often these are courses in which they are either concurrently enrolled as 
second-year students or will be enrolled as third-year students, e.g. electromagnetism, statics, 
circuit theory, or systems and control. This practice of fragmentation ignores the larger curricular 
context in which the courses are being offered. Finally, while not a universal situation, the fact 
remains that many students take these courses in large enrollment settings which have generally not 
proven to be conducive to optimizing student learning2. In this paper we will not address explicitly 
the issues involved in restructuring student learning environments (see for example [5,8,9,21]). 
However, the subject is a rich and important one on which many continue to work3. 
 
CONCEPTUAL FRAMEWORK 
 

“All exact science is dominated by the idea of approximation.” 
- Bertrand Russell4  

 
We propose a year-long integrated course of study emphasizing two themes: 1) linear models in 
their own right and 2) linearity as a tool to help understand non-linear phenomena (the process of 
linearization). These dual themes would offer a way to unify the “standard topics” contained in the 
typical three-course collection of linear algebra, differential equations, and multivariable calculus, 
and to promote the connected learning of their core ideas. While the total number of “contact 
hours” for a course of study of this type would be the same as the three separate courses combined, 
we believe that the whole can be greater than the sum of its parts. Typically, for any given unit of 
time within a term, students are constrained to an equal distribution of formal classroom time in 
each of the three courses (or worse, only one or two of the courses with the others taken in another 
term!). Variable sequencing of the courses further contributes to creating a set of disconnected 
learning experiences. 
The model we propose seeks to break out of this administrative confine, by creating a learning 
structure that embraces the rich interconnectedness of these three subject areas and enables students 
to learn the core ideas in a concurrent manner. Each of the three single-term courses typically 
carries three or four credits, with four to five contact hours each week. In place of this structure 
consider one in which there are six contact hours weekly throughout a year-long (two semester) 
sequence. To maximize active student engagement with concepts through a laboratory learning 
environment, a combination of one- and  two-hour class blocks totaling six hours could be 
scheduled weekly. (Institutions with different credit/contact hour figures, could consider analogous 
restructuring.) In any given week of a term, the relative amount of “coverage” of material usually 
identified with linear algebra, ordinary differential equations, or multivariable calculus can vary, 
and this distribution can change from week to week. At the end of such a course of study, we 
believe the cumulative effect can be at least equivalent to that of an existing system in terms of 
mere “coverage” of standard topics, but much greater in terms of student learning, as a result of the 
coordinated context in which the learning takes place. 
 
                                                                 
2 Characteristic of these settings is the concatenation of large-lecture sections taught by faculty with smaller 
recitation sections taught by graduate students or adjuncts. Students face different instructional approaches 
and styles in this practice, and are also often with different classmates depending on the learning venue, 
further fragmenting their learning experience. 
3 The integration of formal lecture sections, recitation and/or discussion sections into a “studio” or laboratory 
setting coordinates and reinforces opportunities for student learning and understanding. In recent years, RPI 
has developed successful studio approaches to teaching and learning, e.g. Studio Physics [ 28] and Studio 
Calculus [10,11]. 
4 B. Russell, “The Scientific Outlook”, p. 63, The Free Press, Glencoe, IL, 1931. 
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Several projects are in fact working towards this vision, for example, the Linearity I and II project 
(Black et al, see [3]) is experimenting with the structural changes and the use of “mini-projects” 
from science and engineering, while the Coordinated Curriculum Library project (Moore et al, see 
[20]) and the Connected Curriculum project (Wattenberg et al, see  [27]) are developing materials 
and laboratory modules. 
 
Supporting the dual themes of linear models and the linearization process, we envision several axes 
which represent different modeling perspectives which collectively define a conceptual space into 
which projects, experiments, and other learning materials and tools can be placed. One axis 
consists of a one-dimensional to multi-dimensional perspective, a second axis represents the 
interplay between discrete and continuous models, and the third axis captures the contrast between 
deterministic and stochastic phenomena and/or assumptions. 
 

 
Figure 1: A conceptual framework 
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A PROTOTYPE SCOPE AND SEQUENCE 
 
If the first-year curriculum in mathematics aims to develop a rich collection of “ways of knowing” 
a single valued function of one variable, then the second-year should develop a similar 
understanding for single- and vector-valued functions of several variables. The most fundamental 
of these functions are the linear ones, and the presence of multiple variables (both input and output) 
argues naturally for taking up linear systems from the outset. Thus, we envision the year sequence 
beginning with linear systems of equations and developing the basic language of linear algebra: 
vectors, vector operations, superposition, etc. While in the first two or three weeks the distribution 
of “coverage of standard topics” would be weighted significantly towards linear algebra, this 
emphasis could be balanced by an early introduction to the second major theme of the course: the 
use of linear approximations. In both cases these introductions can be naturally connected to and 
complemented by realistic laboratory experiments, either brought directly into the mathematics 
classroom or investigated concurrently in allied departments. For example,  truss problems 
(described below in greater detail) provide a natural way to discuss linear systems of equations. 
Likewise, initial investigations of surfaces and level curves, partial derivatives and gradients, and 
tangent plane approximations could be linked to electrostatics, where students could observe and 
construct equipotential lines on a charged plate. Elementary fluid flow examples could also provide 
useful context.  
 
In our hypothetical model, the first term of the sequence would deal primarily with static models of 
science and engineering phenomena which find expression as purely algebraic equations. A 
particularly interesting and value-added feature afforded by this approach is that the data fitting 
issues that arise naturally in analyzing experimental observations lead directly to least squares 
problems. This of course leads to orthogonality, Gram-Schmidt orthogonalization, and the QR 
algorithm. In addition, the groundwork is laid for more advanced model validation issues 
encountered in upper-division courses. During the second term of the sequence, we see the 
program of study changing to one largely dominated by consideration of dynamic models and 
science and engineering phenomena which express themselves through dynamical systems of 
equations. It would be especially valuable to consider examples that begin as a static model, and 
can later be revisited as a dynamic one. 
 
Within the framework depicted in Figure 1, it is possible to bring out the important interplay 
between the arithmetic and algebra of discrete observations and the calculus of the infinite. For 
example, a natural introduction to dynamical phenomena and models is provided by examination of 
difference equations nn Axx =+1 . This approach capitalizes on the early grounding in the language 
of linear systems we propose. Eigenvalue-eigenvector analysis can be motivated by numerical 
computational experiments and visual representation of the iterations, which reveal the dominant 
eigenvalue and associated eigendirection5. The concepts of equilibria and stability arise naturally 
along with the use of linear approximations of the multivariable functions that define the vector 
fields. Subsequently these ideas are revisited in the form of differential equations and dynamic 
(time-varying) models of science and engineering applications.   
 
PROMOTING CONTEXTUAL LEARNING 
 
We believe the conceptual framework described above can provide multiple entry points from 
which interaction with science and engineering colleagues can proceed to establish and reinforce 
connections with concurrent, core disciplinary courses such as statics, linear circuit theory, 

                                                                 
5 This is of course the basic idea behind power methods for numerical eigenvalue calculations. 



 97 

dynamics, structures, electricity and magnetism, fluid mechanics, and systems and control. Indeed, 
there is emerging evidence (see for example [17-19,23]) that conceptual learning can be positively 
impacted by the use of physical models and “hands on” experiments. While implementation of 
these cross-disciplinary interactions can take the form of guest lectures, demonstrations, and shared 
use of equipment, we believe it is worth considering the systematic and systemic incorporation of 
such experiment-based learning tools directly into the mathematics classroom. For the past several 
years innovative faculty have begun to take advantage of the ready availability of simple hand-held 
Calculator Based Laboratory (CBL) devices from Texas Instruments, and more recently Palm Pilot 
platforms [26] have even begun to make their way into middle school classrooms. We describe 
several examples that are chosen to help illustrate core mathematical ideas and provide 
opportunities to make explicit connections to concepts that students encounter in their courses used 
to satisfy major requirements.   
 
Structures in equilibrium. Planar and three-dimesional trusses are considered, both constructed for 
illustrative purposes and taken from the real-world6. The related subject matter in mechanical 
engineering and civil engineering as well is statics. Strain gauges record the tension in the frame 
members as a result of loads applied at different nodes of the structure. A linear system of equation 
Ax=b relates the vector of displacements in the frame members to the vector of applied forces at 
the nodes. The matrix A is known as the stiffness matrix. 
 
This case provides a concrete example of a linear system of equations and an introduction to 
Gaussian elimination as the method of solution. Linearity or the principle of superposition can also 
be “experienced” first-hand by students as they observe the effect of applying different vectors of 
loads and measuring that the “output of the sum (of inputs) is the sum of the outputs (from each 
input)”. The LU decomposition7 that records the steps of Gaussian elimination is motivated by the 
problem of needing to determine the responses of the truss due to multiple loading vectors 
(different right-hand side vectors b). A particularly attractive feature of this example is that the two 
methods of analysis used by engineers, the so-called method of joints and the method of sections 
are in fact mathematically dual formulations of the problem.  
 
Many points of departure are possible from this example including the investigation of non-linear 
stress-strain relationships and a subsequent linearization to understand local behavior, and the 
investigation of ill-conditioning via consideration of a nearly statically indeterminate system. The 
latter investigation has particularly importance, since the increased use of powerful software 
packages for numerical computation argues for increased attention to understanding issues of 
numerical stability. 
 
Analysis of electric circuits. Basic examples of linear electric circuits are certainly an important 
component of the electrical engineering and physics curriculum. The connectivity matrix (or edge-
node incidence matrix) describes the topology of the electrical network. Kirchoff’s Laws and 
Ohm’s Law combine to yield linear systems of equations relating potentials and currents to applied 
voltages and current sources. Measurement devices can allow students to observe first-hand the 
linear input/output relations embodied in these circuits. 
 

                                                                 
6 For example, members of the Department of Mechanical Engineering at Rennselaer Polytechnic Institute 
have used bicycle frames for similar purposes. 
7 The more general matrix factorization is PA=LU to accomodate row interchanges. 
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As in the preceding example, this case presents another source of “real-world” matrices and linear 
systems of equations8. In fact, Kirchoff's Voltage and Current Laws find equivalent mathematical 
expressions in terms of descriptions of the column space of the connectivity matrix and its left 
nullspace, respectively. Key mathematical concepts such as orthogonality and the interrelationship 
of the four fundamental subspaces associated with a matrix (in addition to the two just mentioned, 
there are the nullspace and row space) arise concretely in terms of the physical context, see [25] for 
example. Furthermore, a discussion of linear independence and basis can be made explicit through 
reference to loops in the graph and the number that are independent. In terms of the discrete-
continous conceptual axis alluded to above,  the edge-node incidence matrix can be viewed as a 
discrete approximation to the derivative operator. Then the fact that its nullspace consists of the 
one-dimensional subspace of constant vectors coincides with anti-differentiation only being 
determined up to the set of constant functions. 
 
Again, there are many points of departure for subsequent revistation afforded by use of this case. 
Introduction of capacitors and inductors to the electric circuit moves the problem into the realm of 
dynamic or time-varying models, i.e. differential equations. But preserving the fundamental linear 
nature of the problem yields another opportunity to encounter the study of eigenvalues and 
eigenvectors. Further on, nonlinear circuits could be considered, for example students could 
experiment with a van der Pol oscillator, allowing motivation for the qualitative analysis of the 
phase plane. The particular consideration of a van der Pol oscillator would also allow investigation 
of bifurcation phenomenon and an opportunity to motivate the use of linearization to gain insight 
into local system dynamics.  
 
Oscillations and periodic phenomena. An air track with a collection of masses and spring is the 
physical system considered. This application is representative of subject matter in mechanical 
engineering, electrical engineering, and physics relating to the broad area of dynamics. Newton's 
Second Law and Hooke's Law combine to yield a second-order linear system of differential 

equations Ax
dt

xd
=

2

2

. 

 
This example again provides a concrete example of a linear system of equations. For a two-mass, 
three-spring system (with equal masses and equal spring constants), the corresponding matrix  

A 







−

−
=

21
12

 has eigenvalues which yield the frequencies of oscillations of the so-called “fast” 

and “slow” modes of oscillation9. Furthermore the eigenvectors of A correspond to the two initial 
conditions (the vector of initial displacements, with zero velocity) that produce exactly these 
fundamental modes of oscillation. One mode begins with the two masses displaced an equal 
amount in the same direction, x(0)=[1,1] and the second mode begins with the two masses 
displaced equal amounts in the opposite direction, x(0)=[1,-1]10. For further investigation, students 
                                                                 
8 Changing applied voltages in these circuits is analogous to changing applied forces in the truss problems, 
with both problems providing additional entry points to a discussion of stability of matrix calculuations and 
conditioning.  
9 In fact the frequencies are the square roots of jλ− , the negative of the eigenvalues. 
10 The author has used this experimental device numerous times in both linear algebra and ordinary 
differential equations courses. Students count the number of oscillations for the different modes in a ten-
second interval and then compare their ratio. This procedure usually yields one decimal place accuracy to the 
theoretical value, much to the surprise and pleasure of the students. Students also report overwhelmingly that 
such an experiment contributes  to their understanding and helps connect their mathematics courses to their 
other science and engineering courses. 
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could increase the number of masses and springs, consider the effect of different masses and 
different spring constants (qualitative dependence on parameters), include frictional effects in their 
model, and consider non-linear effects as well. A particularly interesting avenue to follow is to 
consider the limiting case of an infinite number of masses and springs (each of smaller length), a 
model which could lead to a discussion of the wave equation and conservation principles.  
 
Fluid behavior. Experimental apparatus can also be constructed to illustrate fluid mechanics 
concepts which are particularly germane to students in mechanical engineering and physics. The 
Hele-Shaw cell consists of two clear plastic plates separated by a thin space into which a fluid may 
be injected through various input holes. The narrow spacing confines the fluid to be essentially 
two-dimensional. Here we envision that the use of a real physical fluid can help illustrate a vector 
field and motivate concepts such as its divergence and curl. To that end, students could inject 
colored dye into the fluid to help mark the flow field, or alternatively, small particles such as 
aluminum chips can be used. If the fluid velocity is slow enough, actual measurements can be 
taken. Incompressibility can be felt and mathematically verified div v = 0.  
 
CONCLUSION 
 
By reorganizing mathematical content with an emphasis on contextual learning, the model we 
propose seeks to take advantage of the natural synergy of these three core mathematical subjects 
and their place within the broader context of second-year SMET education. In combination with a 
restructured learning environment, this approach can offer a vehicle for bringing thematic and 
pedagogical coherence to much of the second-year SMET curriculum. This in turn provides a 
unified framework for learning that is applicable to a significant number of SMET students. While 
we believe that many institutions will find value in this approach, it may hold special appeal to 
institutions that enroll large numbers of engineering and/or applied science students. In particular, 
the “coherency and efficiency of coverage” afforded by the framework may help address an 
overcrowded engineering curriculum. For engineering schools in particular this approach is 
consistent with new ABET certification requirements. It is also interesting to speculate about the 
application of this framework to linear algebra, multi-variable calculus and probability and 
statistics in support of a curriculum that reflects a focus on  environmental/civil engineering, 
chemical engineering, and earth science.  
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