Chloroform Alert! University Students Exposed to
Unhealthy Air

The Situation

AAA Chemical Inc. operates two chemical plants in the town of Bayou St. Edwards,
home of Dixieland State University. New pollution monitoring equipment has shown
elevated concentrations of chloroform in the air over the university. These concentrations
are considered unhealthy and the student Engineering Society has formed a study group
to review the problem. They have come up with a number of possible ways to reduce
the pollution including relocating the plants, making the stacks taller, and adding air
pollution control equipment to the plants. They will analyze the costs and compute the
reduction in chloroform concentration that is expected from each possible solution. You
are asked to help them with the project by completing Parts 1, 2, 3, and 4 below.

In Part 1, you will learn how to model chloroform concentrations in the atmosphere in
the presence of diffusion and turbulence. In Part 2, you will add the effects of wind to the
model. Part 3 shows how the model can be simplified in the case of steady state conditions
(no change in chloroform emissions over time), and how the chloroform emissions from the
two chemical production plants can be added together to calculate the combined effect
of the two plants on air quality. In Part 4, you apply the simplified model to Dixieland
University. You are asked to calculate concentrations of chloroform in the air over the
university, and to choose between various engineering remedies.

1 Part 1: Diffusion and Turbulence via Discrete Ap-
proximation

Prevailing winds carry pollutants from several nearby smokestacks to the university cam-
pus. The students want to calculate the levels of chloroform over the campus produced
by the smokestacks under various conditions.

The students began with a review of the literature on the dispersion of air pollutants
from factory stacks. They learned that to find the chloroform levels, they must use the



priniciple of superposition. That is, they must first calculate the effects from each stack
individually, and then add together the effects of all the smokestacks. In fact, they learned
that even to find the effects of continuous emission from a single smokestack, superposition
would be necessary. For this they would take an integral in time of so called fundamental
solutions to the problem. So their overall strategy is to deal with dispersion in as simple a
situation as possible, and then use superposition to build solutions for the more complex
situation they face.

The students also learned that dispersion is governed by the effects of advection,
diffusion, and turbulence. The effects of diffusion and turbulence can be represented as a
random walk. A random walk is a mathematical model of a particle moving randomly,
one step at a time, around R or R". We will use the random walk model to do two
things—first we will derive the partial differential equation (p.d.e.) for the concentration
of molecules undergoing diffusion and turbulence. We will then find the fundamental
solutions to the p.d.e. These are the concentrations resulting from an initial unit mass at
a single point. In later parts we will modify our solutions to take account of the effects
of advection, and see how to use superposition to find the concentrations corresponding
to more complex situations.

We begin with a mass of particles located at discrete positions, able to move at discrete
times, and subject to diffusion and turbulence. To simplify matters, we assume for now
that the particle motion is taking place in one dimension. So consider a mass M, of
particles distributed on a fine grid on the real numbers R. Though the total mass M,
is finite, we assume that the actual number of particles is virtually infinite, and that all
particles have the same mass. Let

ooy —nAz,—(n — 1)Az,...,—Ax,0,Az,...,nAx,...

denote the possible particle positions, where Ax is very small. At the same time, suppose
that the particles can move only at times

t=0,At,2AtL, ..., nAL, ...,

where At is also very small. For each x = mAz and t = nAt let M(z,t) be the mass of
particles located at position x at time t. Thus for each ¢t the sum over x of M (z,t) is M.

Now let C(z,t) be the concentration of mass (mass per unit length) at point = at time
t. In our discrete approximation C'(z,t) = M(x,t)/Az. When we obtain C(z,t) for all
x,t by passing to a limit as Az — 0, it will have the property that for each ¢, the mass
in the interval [a, b] at time ¢ given by

/bC(x,t)d;c (1.1).
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Now we model the particle motion as a simple symmetric random walk. That is, at
each time t each particle will move a distance Az randomly either to the right or to the
left. The direction of motion will be independent of all past motion, and equally likely
to be right or left. (Thus it is impossible for the particle to remain at rest in our model.
This assumption is not restrictive and keeps things simple.) Given these assumptions we
have the equations

M(z,t+ At) = %M(x—Ax,t)+%M(m+Ax,t)

Ot + At) = %C(x ~ Azt + %C(m b Az ) (1.2)

for every x,t in our grids.

Requirement 1. Use (1.2) to express C(z,t + At) — C(z,1) as a linear combination
of C(x + Ax,t),C(z,t), and C(x — Az, t).

We now use your result in Requirement 1 to obtain a relation between 0C/(z,t)/0t
and 0°C(x,t)/0z* for the case of particles continuously distributed along R moving at
all positive times. To find such a relation it is possible to seek out in your equation
approximating difference quotients for the derivatives we want, but we choose to use
Taylor approximations and see what falls out. Of course the difference quotient approach
properly executed will give us the same relationship.

Requirement 2. a) For small At, approximate C'(z,t+ At) — C(z,t) by a first order
polynomial in At. Use a first order Taylor expansion for C' in the second variable with
base point (z,t). Neglect the remainder term. Your answer should involve 0C(x,t)/0t.

b) For small Az, approximate the linear combination of C'(x + Az,t),Cx,t) and
C(xz — Az, t) you got in Requirement 1 by a second order polynomial in Az. Use a second
order Taylor expansion for C' in the first variable, again with base point (z,t). Neglect
the remainder term. Your answer should involve 0*C(z, t) /0.

¢) Set your answer in 2a equal to your answer in 2b. Now assume that At = ¢(Ax)?2.
(We will see later, the standard deviation of the position in a random walk is proportional
to the square root of the time elapsed-i.e. a typical z displacement is proportional to v/1.)
So divide the left hand side of your equation by At, and the right hand side by c¢(Ax)2.
Obtain an equation relating C(z,t)/0t and 0*C(z,t) /0.



If we set k; = (2¢) ! in your equation, we now have the following partial differential
equation for the concentration C'(z,t):

IC (z,t) 0?C(x,t)
ot Ox?
Here the constant k; is called the mass diffusivity; its value depends on the particular
situation.

To determine the function C'(x,t) uniquely for all z, ¢ we not only need to know that
it satisfies (1.3) but we also need additional information on C. The usual requirement
is specification of an initial distribution C(z,0) for all x, but our situation is unusual.
Rather than an initial distribution function for C' over an interval of x, we must deal with
an initial concentration of mass at a single point z, (the location of a smokestack). Can
we specify an initial concentration function for this situation? Since we have positive unit
mass at a single point and no initial mass elsewhere, our concentration function-the mass
“density”—must be infinite at xy and zero elsewhere, and its integral over all x must yield
the unit mass. Thus we must work with a “function” which is zero everywhere except
a single point, where it is infinite, and its integral is 1. Such a “function” is called a
Dirac delta function. A Dirac delta function is not really a function, but everyone
agrees it is a very useful idea so everyone agrees to treat it as a function subject to the
properties just set out. The standard notation for a Dirac delta function concentrated at
xg is 040 (x). Keep in mind its basic properties: d0,,(z) = 0 for x # xg, d,,(x9) = oo, and
S0 0up(x)dx = 1. For any function f we have [%_ f(2)d4,(x)dx = f(z0).

The concentration Cy,(z,t) corresponding to an initial Dirac delta function is called a
fundamental solution to our problem, because the concentration C'(z,t) corresponding to
an arbitrary initial distribution C'(x,0) = f(z) can be built up from these fundamental
solutions. In fact if C,,(x,t) solves (1.3) for each z,t and C,,(z,0) = d0,,(z) for each xg, z,
then C(xz,t) = [Z0, [(u)Cy(z, t)du satisfies (1.3) and C'(z,0) = f(x) for all z. Here we
assume we can differentiate under integrals.

We now derive the formula for the concentration corresponding to an initial point
mass at x = xg; i.e., for the fundamental solution corresponding to initial Dirac delta
function ¢,,. We denote the concentration we seek by C,,(x,t). To work out the formula
for Cy,(z,t) we return to the discrete grids we used above, and track the motion of a
single particle beginning at xy at time ¢ = 0. Its position at time ¢ = 0 is fixed at xq but
its position at any positive time t = nAt is random. To derive the probability distribution
of its position at time ¢ we introduce random variables X, X, .... For each k£ the random
variable X, = +1 if the particle moves to the right at time ¢t = kAt and X, = —1 if the
particle moves left at that time. The X}’s are independent and each X} has distribution

- (1.3).
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P(X; = 1) = .5 and P(X; = —1) = .5 for each k. The random position S(t) of our

particle at time t = nAt can be written
S(t) = X9+ EZ:]XkALE

According to the Central Limit Theorem from probability theory, if n is large, the
distribution of S(t) is approximately normal. The mean of S(t) is zo and the standard
deviation of S(t) is Axy/n.

Requirement 3. Recall from probability theory that for random variables Xy, ..., X,
the mean of the sum X; +...+ X, is the sum of the means of the X;’s, and if in addition
the X1,..., X, are independent the variance of the sum is the sum of the variances. Use
these facts to verify our claims about the mean and standard deviation of S(t).

Requirement 4. Now assume that At = (Ax)?/(2k;) = t/n. What are the mean
and variance of S(t) in terms of {7 Your answer should depend on ¢ but not on Az or n.

Since the distribution of S(¢) becomes normal as n — oo and we know the mean and
variance of S(t) we can write down a limiting density for S(¢) as a function of z.

Requirement 5. Write down the formula for the limiting density of S(t); that is, the
normal density with mean xy and the standard deviation you found in Requirement 4.

If we now return to our assumptions that the number of mass particles is virtually
infinite and the particles all have equal mass, and assume also that the total mass is 1,
then the limiting density you wrote down in Requirement 5 is the mass density in z at
time ¢. In other words, it is the desired solution C,(x,1).

Requirement 6. Verify that C,,(z,t) satisfies equation (1.3).

The remaining point to check is that C,,(z,0) is a Dirac delta function at z,. We
point out C,,(z,t) is a normal density with mean x, and standard deviation ~/2k;t.
Hence C,,(x,t) always integrates over all x to 1, and for ¢ very close to zero, C, (1) is
concentrated near xy and nearly infinite at zo. So we believe that C',(z,0) is a Dirac delta
function at xy. Finally, we ask you to take on faith that there can be only one positive
solution to (1.3) whose initial distribution is the Dirac delta function at x.



2 Part 2: Advection via Discrete Approximation

In this section, we consider the effects of wind (advection) on our problem. For simplicity,
we assume that the wind blows constantly in the same direction. Just as we used discrete
approximations to investigate diffusion and turbulence we do the same for advection. Let
us again consider the fine grid as in Part 1, but we neglect the effects of diffusion and
turbulence and concentrate on advection for now. We assume that we have a wind whose
velocity in the positive direction is ¢. We model this advective effect by the equations

M (z,t + At) = M(x — cAt,t)

Cz,t + At) = C(z — cAt, t) (2.1).

The right hand side of the first equation represents the mass with position = — cAt at the
current time t. At time ¢+ At it will be the mass at position x, which mass is represented
by the left hand side of the first equation. Hence the first equation; the second equation
is simply the first equation divided by Ax.

Requirement 1. Use (2.1) to express C(z,t + At) — C(z,1) as a linear combination
of C(x — cAt,t) and C(z,t).

Requirement 2. Use your result in Requirement 1 to obtain a relation between
0C (z,t)/0t and OC(z,t)/0x. As in Requirement 2 of Part 1 you should approximate
both sides by Taylor polynomials for small A¢, and then divide through by At. This time
you should use first order polynomials in At on both sides.

You should have obtained for C'(z,t) the equation

oC(z,t)  0C(x,t)
ot e ox

=0 (2.2).

We need to put the effects of diffusion and turbulence and advection together. For the
governing equation the standard assumption-the wisdom of the field, if you will-is that
the two effects are additive; thus for the concentration D(z,t) undergoing advection as
well as diffusion and turbulence we arrive at

0D(x,1) N 0D(z,1) 0?D(x,t)

8t C 6.% = kl—aLEQ (23)




A good guess for the fundamental solution of this equation is simply to take the
fundamental solution we found in Part 1 and left it drift with velocity ¢: thus

Do (z,t) = Cpy(z — ¢ty t) (2.4).

Here C, is the fundamental solutions from Part 1.

Requirement 3. Verify that D,,(z,t) solves (2.3). (Hint: Express the derivatives of
D, in terms of the derivatives of C,,, and use the fact that C,, satisfies (1.3).)

We now summarize your results from Parts 1 and 2: A concentration D of mass
undergoing diffusion, turbulence and advection satisfies the equation (2.3). The solution
D,, given by (2.4) is the concentration corresponding to an initial unit mass concentrated
at xg.

We will now extend, without proof, equations and solutions you obtained for one
space dimension to the case of three space dimensions. From here on, we will denote all
concentrations by C.

Let Cp(p,t) be the concentration of mass at p = (z,y,2) at time ¢ corresponding
to a unit mass concentrated at py = (zg,yo0,20) at time ¢ = 0. (In three dimensions
concentration is mass per unit volume.) Assume a wind of constant velocity ¢ in the
positive x direction. Then we have the equation

oC oC 02C 02C 02C

A k k
or | Cor Mg thge Thga

(2.5).
The fundamental solution €, is given by

_ -3/2 —1/2 (@ = — ) (y—yo)? (2 — )3
Cnlpt) = it ksl o ( ( 4kqt + 4kot + Akst
(2.6)

For the sequel, keep in mind that p and py are position vectors in R? and ¢ is the time
variable. In particular, in the context of differential equations including variables z,v, z,
keep in mind that p is short for (x,y, z) and py is short for (xg, yo, 20)-

3 Part 3: Superposition and Steady State

Having found the fundamental solutions to our diffusion-advection equation, we now want
to put these together to deal with mass initially distributed over many locations, and also
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with mass continuously generated over time, such as would arise from a smoke stack. One
element that will be missing from our analysis is the effect of the ground—i.e., does the
ground absorb or reflect the gas in question? However, our smoke stacks will be elevated,
and in this case one can neglect the issues of absorption and reflection with little error,
since the bulk of the movement takes place above ground.

To put together more general solutions from fundamental solutions, we make the key
observation is that equation (2.5) is linear; thus if C; and Cy both satisfy (2.5), then so does
any linear combination of C'; and Cj. In particular, if we begin at time ¢ = 0 with masses
mi,ma, ..., my concentrated at the points pi,ps,...,pr in R? then the corresponding
concentration C'is given by

Cp,t) = XLymiCy, (p. 1) (3.1).

Recall that the vector p as short for (z,y, z). If on the other hand we begin at time ¢t = 0
with mass distributed over R? according to the initial concentration f(z,y, z), then the
corresponding concentration C' is

C(p,t) :/f(u,v,w)C’(u7v7w)(p, t)dudvdw (3.2).

This process of taking linear combinations of fundamental solutions to a linear equation
to obtain solutions corresponding to more complex initial conditions is called superpo-
sition.

Requirement 1. Give the solution to (2.5) corresponding to an initial distribution
of 1 unit of mass at (0,0,1) and 2 units of mass at (0,2,1).

In our application we will need to consider not only mass generated at several points
at the same time but also mass generated at the same point at different times. We handle
this by superposition in the time variable. Let C’;g (p, t) denote the concentration at point
p at time t corresponding to what was a unit mass at py at time tg. Then

C;g(p’ t) - Cpo(pyt - tO) (33)

Requirement 2. Verify that C0 satifies (2.5) for each po,to. (Hint: Relate the
derivatives of C° to those of Cj, and use the fact that (', satisfies (2.5).) Let C' denote
the concentration corresponding to a unit of mass generated at py at time ¢t = 0 and
another unit of mass generated at py at time t = 1. Find C.
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Requirement 3. a) Suppose that starting at time ¢ = A mass is continuously gener-
ated at p = (0,0, 0) according to a mass rate dM/dt = Q)(t). Find the concentration C(z,t)
by superposition in t. Your answer may be left in the form of an integral. (Hint: For each
time s in the interval [A,t] an initial mass @Q(s)ds is generated at (0,0,0). Each unit of
mass generated at (0,0,0) at time s contributes Cf, ;4 (p,t) to the total concentration at
(p,1).)

b) (optional) Assuming Q(t) = Q) is constant, show that your integral satisfies

oc  oC 0*C 0?C 02C

A T A s
ot Cor T Mo T T

Here Qod(0,0,0)(x) is a “forcing term” corresponding to continuous generation of mass.

+ Q06(0,0,0)() (3.4).

It is possible, given sufficient data on the pollution source, to calculate the concen-
tration C'(x,y, z,t) by superposition, as outlined above. However, several simplifying
assumptions will lead to easier calculations. The first simplifying assumptions are that
the rate of emissions is a constant )y and that we have a steady state-that is that the
emissions have been going on for some time and the resulting concentrations do not vary
with time.

Let us give some justification for this. If in your answer to Requirement 3a we let
A — —oo we get

t o0
Cp,t) = Qo /_ _Cooo(pt = s)ds = Qo /0 Cloooy(p,r)dr (3.5)

after the change of variable r = t — s. Notice that the last integral does not depend on {.
Now to save space and effort let
0? 0? 0? 0

Ay LAy T .
"2 TG TREa T %y, (3.6)

Then accepting that we can differentiate under integrals we get, for C'(p,t) defined as in
(3.5),
o0 o JC, D, T
LC(I% t) = QO/O LC(O,QO)(pa T)dT = QO/O %()
since C(o,,0) satisfies equation (2.5). But this last integral is equal to —Q0d(0,0,0) since
Clo,00)(p,t) = 0as t — oo and C(g0,0)(p,0) = 60,00 (p). Thus C(p,t) as defined in (3.5)
satisfies

dr

2 T 20 T
or ' Ox? 28y2 5522

+ Q06(0,0,0)(P) (3.7),
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which is just equation (3.4) with the time derivative removed.

Further simplification is possible and customary. When the wind is appreciable, the
advective effect in the x direction dominates the diffusion effect in that direction. There-
fore we usually drop the 9?C'/0x? term out of (3.7) and divide through by ¢ to get

2 2

g—g = ]{322762’ + k327€ + %(51,0 (p) (38)

Except for the forcing term, this looks like equation (2.5) but with 2 space dimensions and

with ¢ replaced by x. Since the forcing term does not apply for positive x, we drop it from

the equation and make it an initial condition C'(0,y,2) = (Qo/¢)d(yo,20)(¥s 2). Adjusting

the solution (2.6) to meet our current needs we get a simplified approximate formula for
the steady state solution:

Cloy,2) = —2  oxp (—i <(y 1) ZO)Q)) . (3.9)

4/ kgkg 4z k2 k3
We have done a lot of simplifying and assuming. It is worthwhile to check up on this

work numerically. It is helpful to rewrite (3.5) carefully. To keep things simple, let us
take pg = (0,0,0), let s = ¢t, and let v = k;/c. Then we can write (3.5) as

< 1 (x — 5)* Qo c y? 22

. SN A 10).
/0 VATys exp( 4ys >47rs\/k2k3 exp( 4s(k2 + k3>> § (3.10)

Thus in (3.5) we are integrating

Qo c ¥ 2
0 e (L = 3.11
sy P g T ) (3.11)
against
1 _ 2

(=) (3.12)

VATys exp(= 4ys

for s ranging from 0 to co. We now relate (3.5) to (3.9).

Requirement 4. (optional)

a) Use a scientific calculator or computer package to convince yourself that the integral
of (3.12) in s from 0 to oo is 1, no matter what z or v are.

b) Convince your self with a graphics calculator or computer graphics package that as
v — 0, the function in (3.12) becomes a Dirac delta function concentrated at s = .
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¢) Substitute s = z in 3.11. You should get (3.8).

The upshot of Requirement 4 is

(i) (3.5) is an average over s of the two dimensional Gaussian densities in the variables
y, z given by (3.11);

(ii) As ky/c — 0, the mixing function (3.12) becomes concentrated at s = z;

(iii) For s = z (3.10) becomes (3.9).

Therefore for small k; /¢ (3.5) is well approximated by (3.9).

For your requirements in Part 4, you will be asked to carry out various calculations
using (3.9). In those situations 7 = k;/c is not so small. However z is quite large in
those cases, and this also has an impact. It limits the effective range of the variable s in
(3.12) to an interval around = whose length is a relatively small fraction of z, and (3.11)
is relatively constant over that range. So we can hope that in this case also that (3.5) is
well approximated by (3.9).

However, rather than ask you to chase through analytic verifications of all these claims,
we simply suggest that you compare some answers you will get in Part 4 by the simplified
approximate formula (3.9) to the answers you would get from the superposition formula
(3.5). This will be part (b) of Requirement 1 in Part 4.

4 Part 4:

Having derived—-with your assistance-the equations for calculating the concentration of
chloroform in the air due to a stack discharge, the students then collected data on the
two plants. They found the following information:

Plant 1:

e Qo = 100 grams/second
e stack height: z = 25 meters

e Distance from Student Union (parallel to the predominant wind direction): z =
4000 meters

e Distance from Student Union (perpendicular to the predominant wind direction):
y = 300 meters

Plant 2:
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(o = 50 grams/second

stack height: 10 meters

Distance from Student Union (parallel to the predominant wind direction):x = 1100
meters

Distance from Student Union (perpendicular to the predominant wind direction):
1y = 45 meters

Students in the Environmental Fngineering Department have conducted atmospheric
diffusion experiments and determined that appropriate values for ks and k3 are 0.45 m?/s
and 0.32 m?/s, respectively. Also, wind velocities in the area are typically 0.5 m/s.

Requirement 1. a) Predict the chloroform concentrations in the ambient air over the
Student Center due to the emissions from these plants under the prevailing wind conditio
ns.

b) Consider the two smokestacks introduced in Part 4. For each smokestack use a
graphing calculator or computer package to determine intervals where the corresponding
integrand in (3.5) is concentrated. Then use numerical integration from a calculator or
computer package to evaluate (3.5) for each smokestack. Assume k; = 0.45. Your answers
should be fairly close to those you obtained in part a).

Requirement 2. Suppose an atmospheric inversion occurs and a mass of stagnant air
settles over the area for several days. In this case, wind velocities drop to approximately
0.05 m/s. Find the resulting chloroform concentrations. Compare these to the concentra-
tions found with the usually prevailing wind conditions. Under which conditions is the
air quality healthier?

Requirement 3. The students have proposed several methods for reducing chloro-
form concentrations in the ambient air over the campus:

1. increase each stack’s height by 8 meters.

2. add pollution control equipment such as air scrubbers to the stacks to reduce the
mass rate by 35 grams/second.

3. shut down production at Plant 2 and transfer all operations to Plant 1.
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4. move Dixieland State University to Hawaii so students and faculty can escape the
chloroform without interrupting chemical plant operations.

Determine the effect that each of these options would have on ambient air concentra-
tions of chloroform at the Student Center. Discuss the options (including the chemical
plants as presently constructed) from the point of view of ambient air quality, cost (es-
timated), and feasibility. Provide a recommendation as to how the chloroform emissions
should be reduced.

Requirement 4. When the students take their recommendations to AAA Chemical
Inc., company managers reply that cost considerations should be evaluated more scientif-
ically. The managers supply the students with the following data.

e Cost of increasing stack height: $30,000 fixed cost plus $5,000 per meter (to a
maximum stack height of 40 meters)

e Cost of pollution control equipment per plant : Cost = 10,000 + 2,000r%, where r
is the number of grams/second reduced (to a minimum emission of 2 grams/second
at each plant) and Cost is in dollars.

e Shut down and transfer operations at either plant: $2,000,000.

e Relocate Dixieland State University: $500 million to rebuild the university in Hawaii,
offset by $200 million in sale of Bayou StEdwards property and $100 million in
present worth value of the larger student population eager to attend college in
Hawaii.

a) Calculate the cost of building each stack to a 40 meter height. What is the resulting
ambient concentration at the Student Center under prevailing wind conditions?

b) Calculate the cost of reducing emissions at each plant to 2 grams/second. What
is the resultant ambient chloroform concentration at the Student Center under prevailing
wind conditions?

¢) Compute the costs of each of the options in Requirement 3. Is your recommendation
from Requirement 3 more expensive than the other options? Would you change your
initial recommendation based on these costs? Write a paragraph comparing the cost and
effectiveness of each option.

Requirement 5. a.)The cost of transferring the chemical plant operations to a single
plant is $2,000,000. By how much would emissions at each plant be reduced if $1,000,000
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is spent on pollution control equipment at each plant? What would the resulting ambient
concentrations at the Student Center be?

b.)What is the optimal allocation of the $2,000,000 for pollution control equipment
between the two plants? You should base your answer on the allocation which provides
the lowest ambient chloroform concentration at the Student Center.
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5 Solutions

Part 1 Requirement 1.
O, + AL) — Cla, 1) = %C’(m + Az 1) — Cla ) + %C’(m — Az (S1.1).

Requirement 2. Using a first degree Taylor expansion in variable ¢, the left hand side
of (S1.1) can be approximated by dC(z,t)At. Using second degree Taylor expansions in
the variable z, the right hand side of (S1.1) can be approximated by

1 oC (z,1)
§<C(x,t)+ or Az+ 0z? 2

Simplifying the right hand Taylor expansion, assuming At = ¢(Az?) and then dividing
through by At we get

02C (z,t) Az? 1 OC (z,t) 02C (z,t) Az?
>—C($, t)+§ <C($, t) — B Az + TT .

ot - 2c 0x?

Requirement 3. E(S(t)) = xo + X7 E(Xg) Az = zg since F(Xy) = 0 for each k.
Also the variance V(S(t)) = X7, V(AxX}) = n(Ax)? So the standard deviation of S(t)
is Azy/n.

Requirement 4. F(S(t))

Requirement 5. C,,(z,t)

Requirement 6.

o) _ 1 (M) | (51.2)

zg and V(S(t)) = n(Ax)? = 2kt.
(4mkt) =" 2 exp(—(z — x0)?/4k:t).

60900 (x, t) _ —1/2 1 (x — $0)2 (x - xO)Q
—a = (4ky) — o0 + TR exp(—iﬂﬁlt ) (51.3).
P o U @ (@)
w0 (T, T —1)2 T — Iy T — g
— " = (2mkyt — - 1.4).
0x? (2mkit) ( 2kt * 4(kyt)? )exp( 4kt ) (514)
It follows immediately that C,, satisfies (1.3).
Part 2

Requirement 1. C(z,t + At) — C(z,t) = C(x — cAt, t) — C(x,t).
Requirement 2. Approximating the left hand side of the equation in Requirement
1 by a first order Taylor polynomial in the variable ¢ and the right hand side of that

15



equation by a first order Taylor polynomial in the variable x we get (0C(x,t)/0t)At =
—c(0C (x,t)/0x)At. Dividing through by At we get

0C (z, 1) n 0C (z, 1)

o =0 (52.1).

Requirement 3. The key here is to use our results from Part 1, and not repeat all
the differentiation. From the defining equation (2.4) we get 0D, (z,t)/0t = —cOC,,(x —
ct,1)/0x + 0C,,(x — ct,t)/0t. Also from (2.4) 0D, (x,t)/0x = OC,,(z — ct,t)/0x and
02D 4 (z,1)02* = 0*Cy(z — ct, t)/0x?. Putting all these together and using (2.2) we get
that D,, satisfies (2.3).

Part 3.

Requirement 1. Cg o1y + 2C102,1).

Requirement 2. Each derivative of C’Zt)g involved in this equation is the corresponding
derivative of (', evaluated at (p,t — to). Since O, satisfies (2.5) so does C°. For the
conditions given here, C' = C’go + C’;O.

Requirement 3. a) C(z,1) = [} Q(5)Clo,0,0)(p: t)ds.

b) For convenience define I as in equation 83.6). Then accepting that we can differ-
entiate under integrals we get

oC t oCe

—_— t YV
5 QuCo,0,0)(P: 1) + Qo A Ot(p,t) *

t
= QOC(O,QO) (Pa 0) +/A LC(So,o,O)(P, t)ds = QOC(QO,O) (Pa 0) + LC.

Requirement 4. a) It is possible to show that this integral is 1, as Victor Moll has
shown us. However plugging in various values of x and ~ will also convince us of this.

b) Use a standard graphing calculator such as the TI-82 and adjusting the window.

¢) obvious

Part 4.

Requirement 1. a) Plant 1: 9.52 x 107% grams/m?. Plant 2: 5.52 x 10~ grams/m?.
Total ambient air concentration: 5.52 x 1073 grams/m?.

b) Plant 1: (3.5) integrand concentrated in r on [7500,8500]; C' = 9.6 x 1075. Plant 2:
(3.5) integrand concentrated in r on [1900,2500]; C' = .0055.

Requirement 2. Plant 1: 2.79 x 1073 grams/m?. Plant 2: 9.02 x 102 grams/m?.
Total ambient air concentration: 12.81 x 1072 grams/m?.

Requirement 3. Option 1: Plant 1: 9.10 x 107% grams/m?® Plant 2: 5.09 x 1073
grams/m?. Total ambient air concentration: 5.09 x 1073 grams/m?. Option 2: Plant 1:
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6.19 x 1075 grams/m3 Plant 2: 1.66 x 10~3 grams/m?. Total ambient air concentration:
1.66 x 10~3 grams/m>®. Option 3: Combined plant at Plant 1 location: 1.42 x 10°°
grams/m?. Option 4 27.07 x 1073, Option 4: 0 grams/m?, assuming no chloroform-
emitting plants in Hawaii within transport distance of the University.
Costs and Feasibility: Option 1: High cost option. Must add height to existing struc-
ture. Makes little difference in ambient concentrations. Option 2: lower capital costs but
will increase operating and maintenance costs. Very feasible — the common practice, in
fact. Best for the overall environment since total emissions are reduced. Options 3 & 4:
may actually be less expensive to operate in the long run since operations are centralized.
May be infeasible if the company had a good reason to separate the plants to begin with.
Does not reduce the total amount emitted but if all operations are moved to plant 1, the
concentration at the Student Center is greater reduced. Option 5: costs are very high and
the project, while tempting, is probably infeasible. Existing project: the default choice.
Obviously feasible, presumably the preferred choice from a cost perspective.

Requirement 4. a.) $105,000 for Plant 1, $180,000 for Plant 2. Concentration due
to Plant 1:8.65 x 10 %grams/m®. Concentration due to Plant 2: 3.23 x 1072 grams/m?.
b.)$19.21 million for Plant 1, $4.62 million for Plant 2. Concentration due to Plant 1:
1.90 x 107 grams/m?. Concentration due to Plant 2 : 2.21 x 10~% grams/m3. c.) Option
1: $70,000 at each plant. Option 2: $246,00 0 at each plant. Option 3: $2,000,000.
Option 5: $2,000,000. Option 5:$200 million.

Requirement 5. a.)22.25 grams/sec. Concentration due to Plant 1: 7.38x10™%grams/m?.
Concentration due to Plant 2: 3.03 x 10 3grams/m?. b.) Optimal allocation would be to
use the entire $2,000,000 to reduce emissions at Plant 2.
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