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The given curve is plotted below using Mathematica: 
 

f@x_D =è!!!!!x3;
 

 Plot[{f[x]},{x,0,1}] 
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For the line tangent to the curve to be 45˚, it must have a slope of 1, meaning the standard 
equation for a line, y=mx+b, is simply y=x+b. The only remaining question is where the 
line tangent to f(x), at point (x,y), crosses the y axis (the value for b). 
 Since the slope of the line tangent to the curve is equal to the derivative for any 
value in the domain, 1 must be both the slope of the tangent line and the value of the 
derivative for some value of x. To find this value, I set the derivative equal to 1, and 
solved for x using mathematica: 
 

f'@xD    =  
3 x2

2 è!!!!!x3  

Solve[f'[x]==1] 
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The last step is to determine the length of the curve from x=0 to x=4/9. These 
values will become the limits of the integral in the Arc Length formula: 
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With the given and calculated values substituted, the answer becomes: 
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So, the final answer is about 0.541756. 
 
 
Extra Note: 
 

Knowing that the x value of the tangent point is 4/9, we now have half of the point 
(x,y) (see above). Substituting this value into the original function, we get 
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is used to determine the equation of a line tangent to a curve: 
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Graphically, this curve and the original curve can be seen below: 
In[17]:= tangent@x_D = x − 4ê9 +è!!!!!!!!!!!!!!!H4 ê9L3

In[27]:= Plot@8f@xD, tangent@xD<, 8x, 0, 1<D
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