MA205 Integral Calenlns and Introduction to Differential Equations

Lesson 45 - Analytic Solutions 1I: Second Order Differential Equations

Objectives

i
e Given a sccond order, linear. homogenecus differential equation, deterniine the characteristic or auxiliary
equation.

e Determine a general solution to a given second order. lnear, hoemogencous differentint ecuatiosn.
e Find the particular solntion to a second order, linear, Lomoegencous nitial-value problenn.
READ
e Stewart, Chapter 17.1, pages 1111-1116.
| THINK ABOUT

¢ What is an oscillation?

e What is the relationship between position velocity and acceleration?

MATHEMATICA COMMANDS AND TASKS YOU NEED TO KNOW

No new connnands.
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1
| AMechanies Based Problems |
For the next three problems find the general solution to the given second order differentiol cquation.
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For the nert two problems find ithe particular sobuion by hand) to the given sccond ovder differentiol equotion
by hard,
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0.y + 12y 3y =0, g()y=06, y{i)=1
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mehi(*m Solving Problems

L. Match the second order differential cquations below to a solution curve grapls
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2. Find the secessary valudiof /7 so that 247 + 3y’ + Gy = 0
s Y

{a} has a solution function that oscillates with constant amplitude.
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(b} has 2 solution fuuction that asciliates with a decaying amplitude.
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(¢} has a solution function with real and distinet roots,
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() has a solution function with repeated roots.
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3. Given that p(t) = 7 — 1™ {5 a particnlar sohuition to a second order linear differentinl equation, what is
the differential equation? What are the initial conditions?
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