MA206 – Probability & Statistics

Measuring Fit of a Line
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When we are given bivariate data (xi, yi), sometimes we would like to fit that data with a straight line.  If we are given more than two points that are not collinear, then it is impossible to find a line that fits through all of the data points.  In this case, we would like to find the equation of a line (
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) that lies as close to the given points as possible.  Notice that we are using the notation 
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 instead of yi because they have different meanings.  
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 is the fitted or predicted value that you obtain by substituting xi into the estimated regression line, while yi is the actual observed value.  Generally, 
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 for i = 1, 2, ... , n where n represents the 
size of the sample of ordered pairs (number of data points).  In fact, the difference between the observed value and the fitted value,
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,  is called the error or residual.  Graphically, residuals are the vertical deviations of the data from the line and are labeled dist1, dist2, and dist3 in the figures to the right.

You might think that the easiest way to fit a linear model to the data is to find a line that minimizes the sum of all of the vertical distances from the line to the points.  From Figure 1, you see that the sum of those distances 
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 can be equal to zero.  However, from Figure 2, you see that there are many possible ways (actually an infinite number) that this sum can be made to equal zero.  This will be the case as long as -dist2 = dist1 + dist3.  In this case, 
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 will be negative for dist1 and dist3 while it is positive for dist2.  Therefore, there are an infinite number of m and b’s that you can choose that will make this sum equal to zero.  Since we would like a measure of how far each 
data point is from the line that does not cancel out the distance of the other data points, then we have two options.  We can either choose to take the absolute value or square each distance.  Since this is a minimization problem and we expect to use calculus to find the optimal m and b, we decide that squaring the distances is the best choice.  Therefore, we have come up with the following equation to minimize:
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, where n represents the number of data points that we have.  We call this function the sum of squares, or more commonly the sum of squares error (SSE).  The line that results from minimizing this function is called the Least Squares Regression line for the set of data.  Before we proceed to minimize this function, let’s take a closer look at how we use the quantity 
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 to assess model adequacy.

Example 1:  Given the bivariate data set {(1, 4), (3, 3), (5, 6)} and the proposed linear model 
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, determine the SSE for this model.
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	1
	1
	4
	0.4(1)+2.5=2.9
	(4-2.9)2=1.21

	2
	3
	3
	0.4(3)+2.5=3.7
	(3-3.7)2=0.49

	3
	5
	6
	0.4(5)+2.5=4.5
	(6-4.5)2=2.25

	
	
	
	SSE:
	1.21+0.49+2.25=3.95


Therefore, when the above linear model is applied to this data set, the resulting sum of squares error is 3.95.  The next question to be answered is, “Is this the best model for this data set?”


In order to answer this question, let’s first take a minute and review some concepts from your plebe math class.  If you are given a system of linear equations, one method of solving those equations is to use matrix operations.
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   (yields the following matrix)  
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 .  You will recall that the solution to this 2x2 matrix is easily determined by the following operation:  
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Example 2:  Find the solution to  
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 using the matrix operations above.  The matrix form of the system is 
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 while the solution is 
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.  It is left as an exercise for you to ensure that this is in fact the solution to the above system of equations.

Before we return to the minimization, let’s also review a few summation ( ∑ ) properties that will be helpful in the derivation.  First, let’s look at how a summation of a constant can be simplified.  Given 
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, we see that we are adding four – three times 
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and can therefore generalize this as follows:  
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.  Work a few more examples for yourself to show that this equation makes sense – we will call this Summation Property 1.  

Next, let’s see if we can simplify the summation of a constant times a variable.  Let’s take a look at another example:  
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  Here, we are saying that if you have a constant times a variable, then you can pull the constant out of the summation – we will call this Summation Property 2.  These two summation properties are key to understanding the following minimization.

Recall that we want to find the m and b that minimize the equation, 
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.  Right now, you should be thinking multivariable optimization from last semester where the M (m, b) is the objective function.  We will simplify the objective function by squaring it and using the summation properties above.  After we have simplified it as much as possible, then we’ll use multivariable calculus to find the m and b that minimize the sum of squares.
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       (square the term)
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(square the last term)

= 
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(distribute the -2yi)
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(distribute the summation)
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(Summation Property 2)

= 
[image: image32.wmf]å

å

å

å

å

-

-

+

+

+

i

i

i

i

i

i

y

b

y

x

m

b

n

x

mb

x

m

y

2

2

2

2

2

2

2



(Summation Property 1)

Now we are ready to optimize the simplified objective function:
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We must simultaneously solve the following system of equations: 
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These equations simplify to 
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.  Since there is a 2 in each term, we divide both equations by 2 and then set it up as a 2 equation / 2 unknown problem.  Remember that in this problem, we know the values for xi and yi.  Therefore, we can calculate each of these summations for any set of data points that are given.  What we are trying to find is the slope (m) and the y-intercept (b) of the line that minimizes the sum of the square distances as described above.  We have the above system of two linear equations that can be easily solved with the matrix operations that we reviewed earlier.
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   (using matrix operations above to solve)
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Example 3:  Using the bivariate data set {(1, 4), (3, 3), (5, 6)} from Example 1, find the slope and y-intercept of the least squares regression line.

	i
	xi
	yi
	xi yi
	xi2

	1
	1
	4
	4
	1

	2
	3
	3
	9
	9

	3
	5
	6
	30
	25

	∑
	9
	13
	43
	35
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Finally, using the equation of the least squares regression line, 
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, we can calculate the SSE for this model.
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	1
	1
	4
	0.5(1)+2.833=3.333
	(4-3.333)2=0.445

	2
	3
	3
	0.5(3)+2.833=4.333
	(3-4.333)2=1.777

	3
	5
	6
	0.5(5)+2.833=5.333
	(6-5.333)2=0.445

	
	
	
	SSE:
	0.445+1.777+0.445=2.67


As we would expect, the sum of squares error for the least squares regression line (SSE = 2.67) is lower than that of the first model introduced in Example 1 (SSE = 3.95).  
dist1 = -4





dist3 = -4





dist2 = 8





	Figure 1





dist1 = -2





dist3 = -7





dist2 = 9





	Figure 2





These are just numbers once you are given the data.
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